2,083 research outputs found
Boolean network model predicts cell cycle sequence of fission yeast
A Boolean network model of the cell-cycle regulatory network of fission yeast
(Schizosaccharomyces Pombe) is constructed solely on the basis of the known
biochemical interaction topology. Simulating the model in the computer,
faithfully reproduces the known sequence of regulatory activity patterns along
the cell cycle of the living cell. Contrary to existing differential equation
models, no parameters enter the model except the structure of the regulatory
circuitry. The dynamical properties of the model indicate that the biological
dynamical sequence is robustly implemented in the regulatory network, with the
biological stationary state G1 corresponding to the dominant attractor in state
space, and with the biological regulatory sequence being a strongly attractive
trajectory. Comparing the fission yeast cell-cycle model to a similar model of
the corresponding network in S. cerevisiae, a remarkable difference in
circuitry, as well as dynamics is observed. While the latter operates in a
strongly damped mode, driven by external excitation, the S. pombe network
represents an auto-excited system with external damping.Comment: 10 pages, 3 figure
Recommended from our members
Poleward energy transport: is the standard definition physically relevant at all time scales?
Poleward energy transport in the atmosphere and oceans constitutes an important branch of the global energy budget, and its role in the climate system has been
the subject of many studies. In the atmosphere, the transport is affected by “eddies” and large scale meridional cells, both with zero net mass transport across latitude circles, but also partly by processes associated with a net transport of mass across latitude circles. The latter must cease to operate in steady state, but they may be significant when time variability of the heat budget is considered. Indeed, examination of reanalysis data on short (daily to monthly) timescales shows that mass variations on these timescales result in surprisingly large fluctuations (in excess of 10^15 W
= 1 PW) in the poleward heat transport. These fluctuations are referred to as “extensive”, for they primarily alter the mass integrated energy of the region considered, but not its averaged value. It is suggested that extensive fluctuations mask more meaningful climate signals present in the heat transport variability on monthly and interannual timescales, and a new formulation is proposed to isolate the latter. This new formulation is applied successfully to reanalysis data and climate model simulations
Young men’s views towards the barriers and facilitators of internet-based Chlamydia trachomatis screening: a qualitative study
Background: There is a growing number of Internet-based approaches that offer young people screening for sexually transmitted infections.
Objective: This paper explores young men’s views towards the barriers and facilitators of implementing an Internet-based screening approach. The study sought to consider ways in which the proposed intervention would reach and engage men across ages and socioeconomic backgrounds.
Methods: This qualitative study included 15 focus groups with 60 heterosexual young men (aged 16-24 years) across central Scotland, drawn across age and socioeconomic backgrounds. Focus groups began by obtaining postcode data to allocate participants to a high/low deprivation category. Focus group discussions involved exploration of men’s knowledge of chlamydia, use of technology, and views toward Internet-based screening. Men were shown sample screening invitation letters, test kits, and existing screening websites to facilitate discussions. Transcripts from audio recordings were analyzed with "Framework Analysis".
Results: Men’s Internet and technology use was heterogeneous in terms of individual practices, with greater use among older men (aged 20-24 years) than teenagers and some deprivation-related differences in use. We detail three themes related to barriers to successful implementation: acceptability, confidentiality and privacy concerns, and language, style, and content. These themes identify ways Internet-based screening approaches may fail to engage some men, such as by raising anxiety and failing to convey confidentiality. Men wanted screening websites to frame screening as a serious issue, rather than using humorous images and text. Participants were encouraged to reach a consensus within their groups on their broad design and style preferences for a screening website; this led to a set of common preferences that they believed were likely to engage men across age and deprivation groups and lead to greater screening uptake.
Conclusions: The Internet provides opportunities for re-evaluating how we deliver sexual health promotion and engage young men in screening. Interventions using such technology should focus on uptake by age and socioeconomic background. Young people should be engaged as coproducers of intervention materials and websites to ensure messages and content are framed appropriately within a fast-changing environment. Doing so may go some way to addressing the overall lower levels of testing and screening among men compared with women
CDK-dependent nuclear localization of B-Cyclin Clb1 promotes FEAR activation during meiosis I in budding yeast
Cyclin-dependent kinases (CDK) are master regulators of the cell cycle in eukaryotes. CDK activity is regulated by the presence, post-translational modification and spatial localization of its regulatory subunit cyclin. In budding yeast, the B-cyclin Clb1 is phosphorylated and localizes to the nucleus during meiosis I. However the functional significance of Clb1's phosphorylation and nuclear localization and their mutual dependency is unknown. In this paper, we demonstrate that meiosis-specific phosphorylation of Clb1 requires its import to the nucleus but not vice versa. While Clb1 phosphorylation is dependent on activity of both CDK and polo-like kinase Cdc5, its nuclear localization requires CDK but not Cdc5 activity. Furthermore we show that increased nuclear localization of Clb1 during meiosis enhances activation of FEAR (Cdc Fourteen Early Anaphase Release) pathway. We discuss the significance of our results in relation to regulation of exit from meiosis I
Mathematical Model of a Cell Size Checkpoint
How cells regulate their size from one generation to the next has remained an enigma for decades. Recently, a molecular mechanism that links cell size and cell cycle was proposed in fission yeast. This mechanism involves changes in the spatial cellular distribution of two proteins, Pom1 and Cdr2, as the cell grows. Pom1 inhibits Cdr2 while Cdr2 promotes the G2 → M transition. Cdr2 is localized in the middle cell region (midcell) whereas the concentration of Pom1 is highest at the cell tips and declines towards the midcell. In short cells, Pom1 efficiently inhibits Cdr2. However, as cells grow, the Pom1 concentration at midcell decreases such that Cdr2 becomes activated at some critical size. In this study, the chemistry of Pom1 and Cdr2 was modeled using a deterministic reaction-diffusion-convection system interacting with a deterministic model describing microtubule dynamics. Simulations mimicked experimental data from wild-type (WT) fission yeast growing at normal and reduced rates; they also mimicked the behavior of a Pom1 overexpression mutant and WT yeast exposed to a microtubule depolymerizing drug. A mechanism linking cell size and cell cycle, involving the downstream action of Cdr2 on Wee1 phosphorylation, is proposed
Validation of the Cardiosphere Method to Culture Cardiac Progenitor Cells from Myocardial Tissue
At least four laboratories have shown that endogenous cardiac progenitor cells (CPCs) can be grown directly from adult heart tissue in primary culture, as cardiospheres or their progeny (cardiosphere-derived cells, CDCs). Indeed, CDCs are already being tested in a clinical trial for cardiac regeneration. Nevertheless, the validity of the cardiosphere strategy to generate CPCs has been called into question by reports based on variant methods. In those reports, cardiospheres are argued to be cardiomyogenic only because of retained cardiomyocytes, and stem cell activity has been proposed to reflect hematological contamination. We use a variety of approaches (including genetic lineage tracing) to show that neither artifact is applicable to cardiospheres and CDCs grown using established methods, and we further document the stem cell characteristics (namely, clonogenicity and multilineage potential) of CDCs.CPCs were expanded from human endomyocardial biopsies (n = 160), adult bi-transgenic MerCreMer-Z/EG mice (n = 6), adult C57BL/6 mice (n = 18), adult GFP(+) C57BL/6 transgenic mice (n = 3), Yucatan mini pigs (n = 67), adult SCID beige mice (n = 8), and adult Wistar-Kyoto rats (n = 80). Cellular yield was enhanced by collagenase digestion and process standardization; yield was reduced in altered media and in specific animal strains. Heparinization/retrograde organ perfusion did not alter the ability to generate outgrowth from myocardial sample. The initial outgrowth from myocardial samples was enriched for sub-populations of CPCs (c-Kit(+)), endothelial cells (CD31(+), CD34(+)), and mesenchymal cells (CD90(+)). Lineage tracing using MerCreMer-Z/EG transgenic mice revealed that the presence of cardiomyocytes in the cellular outgrowth is not required for the generation of CPCs. Rat CDCs are shown to be clonogenic, and cloned CDCs exhibit spontaneous multineage potential.This study demonstrates that direct culture and expansion of CPCs from myocardial tissue is simple, straightforward, and reproducible when appropriate techniques are used
Single Spin Asymmetry in Polarized Proton-Proton Elastic Scattering at GeV
We report a high precision measurement of the transverse single spin
asymmetry at the center of mass energy GeV in elastic
proton-proton scattering by the STAR experiment at RHIC. The was measured
in the four-momentum transfer squared range \GeVcSq, the region of a significant interference between the
electromagnetic and hadronic scattering amplitudes. The measured values of
and its -dependence are consistent with a vanishing hadronic spin-flip
amplitude, thus providing strong constraints on the ratio of the single
spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated
by the Pomeron amplitude at this , we conclude that this measurement
addresses the question about the presence of a hadronic spin flip due to the
Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure
Centrality and transverse momentum dependence of elliptic flow of multi-strange hadrons and meson in Au+Au collisions at = 200 GeV
We present high precision measurements of elliptic flow near midrapidity
() for multi-strange hadrons and meson as a function of
centrality and transverse momentum in Au+Au collisions at center of mass energy
200 GeV. We observe that the transverse momentum dependence of
and is similar to that of and , respectively,
which may indicate that the heavier strange quark flows as strongly as the
lighter up and down quarks. This observation constitutes a clear piece of
evidence for the development of partonic collectivity in heavy-ion collisions
at the top RHIC energy. Number of constituent quark scaling is found to hold
within statistical uncertainty for both 0-30 and 30-80 collision
centrality. There is an indication of the breakdown of previously observed mass
ordering between and proton at low transverse momentum in the
0-30 centrality range, possibly indicating late hadronic interactions
affecting the proton .Comment: 7 pages and 4 figures, Accepted for publication in Physical Review
Letter
Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au+Au collisions at and 200 GeV
The acceptance-corrected dielectron excess mass spectra, where the known
hadronic sources have been subtracted from the inclusive dielectron mass
spectra, are reported for the first time at mid-rapidity in
minimum-bias Au+Au collisions at = 19.6 and 200 GeV. The excess
mass spectra are consistently described by a model calculation with a broadened
spectral function for GeV/. The integrated
dielectron excess yield at = 19.6 GeV for
GeV/, normalized to the charged particle multiplicity at mid-rapidity, has
a value similar to that in In+In collisions at = 17.3 GeV. For
= 200 GeV, the normalized excess yield in central collisions is
higher than that at = 17.3 GeV and increases from peripheral to
central collisions. These measurements indicate that the lifetime of the hot,
dense medium created in central Au+Au collisions at = 200 GeV
is longer than those in peripheral collisions and at lower energies.Comment: 9 pages, 6 figure
- …