504 research outputs found

    Constraints on the Dark Energy from the holographic connection to the small l CMB Suppression

    Get PDF
    Using the recently obtained holographic cosmic duality, we reached a reasonable quantitative agreement between predictions of the Cosmic Microwave Background Radiation at small l and the WMAP observations, showing the power of the holographic idea. We also got constraints on the dark energy and its behaviour as a function of the redshift upon relating it to the small l CMB spectrum. For a redshift independent dark energy, our constraint is consistent with the supernova results, which again shows the correctness of the cosmic duality prescription. We have also extended our study to the redshift dependence of the dark energy.Comment: accepted for publication in Phys. Lett.

    Construction of a bacterial artificial chromosome library from the spikemoss Selaginella moellendorffii: a new resource for plant comparative genomics

    Get PDF
    BACKGROUND: The lycophytes are an ancient lineage of vascular plants that diverged from the seed plant lineage about 400 Myr ago. Although the lycophytes occupy an important phylogenetic position for understanding the evolution of plants and their genomes, no genomic resources exist for this group of plants. RESULTS: Here we describe the construction of a large-insert bacterial artificial chromosome (BAC) library from the lycophyte Selaginella moellendorffii. Based on cell flow cytometry, this species has the smallest genome size among the different lycophytes tested, including Huperzia lucidula, Diphaiastrum digita, Isoetes engelmanii and S. kraussiana. The arrayed BAC library consists of 9126 clones; the average insert size is estimated to be 122 kb. Inserts of chloroplast origin account for 2.3% of the clones. The BAC library contains an estimated ten genome-equivalents based on DNA hybridizations using five single-copy and two duplicated S. moellendorffii genes as probes. CONCLUSION: The S. moellenforffii BAC library, the first to be constructed from a lycophyte, will be useful to the scientific community as a resource for comparative plant genomics and evolution

    The Conformal Sector of F-theory GUTs

    Full text link
    D3-brane probes of exceptional Yukawa points in F-theory GUTs are natural hidden sectors for particle phenomenology. We find that coupling the probe to the MSSM yields a new class of N = 1 conformal fixed points with computable infrared R-charges. Quite surprisingly, we find that the MSSM only weakly mixes with the strongly coupled sector in the sense that the MSSM fields pick up small exactly computable anomalous dimensions. Additionally, we find that although the states of the probe sector transform as complete GUT multiplets, their coupling to Standard Model fields leads to a calculable threshold correction to the running of the visible sector gauge couplings which improves precision unification. We also briefly consider scenarios in which SUSY is broken in the hidden sector. This leads to a gauge mediated spectrum for the gauginos and first two superpartner generations, with additional contributions to the third generation superpartners and Higgs sector.Comment: v2: 51 pages, 2 figures, remark added, typos correcte

    Hint for Quintessence-like Scalars from Holographic Dark Energy

    Full text link
    We use the generalized holographic dark energy model, in which both the cosmological constant (CC) and Newton's constant G_N are scale-dependent, to set constraints on the renormalization-group (RG) evolution of both quantities phrased within quantum field theory (QFT) in a curved background. Considering the case in which the energy-momentum tensor of ordinary matter stays individually conserved, we show from the holographic dark energy requirement that the RG laws for the CC and G_N are completely determined in terms of the lowest part of the particle spectrum of an underlying QFT. From simple arguments one can then infer that the lowest-mass fields should have a Compton wavelength comparable with the size of the current Hubble horizon. Hence, although the models with the variable CC (or with both the CC and the G_N varying) are known tolead to successful cosmologies without introducing a new light degree of freedom, we nonetheless find that holography actually brings us back to the quintessence proposal. An advantage of having two different components of the vacuum energy in the cosmological setting is also briefly mentioned.Comment: 9 pages, two references added, to appear in JCA

    Deterministic processes structure bacterial genetic communities across an urban landscape

    Get PDF
    Land-use change is predicted to act as a driver of zoonotic disease emergence through human exposure to novel microbial diversity, but evidence for the effects of environmental change on microbial communities in vertebrates is lacking. We sample wild birds at 99 wildlife-livestock-human interfaces across Nairobi, Kenya, and use whole genome sequencing to characterise bacterial genes known to be carried on mobile genetic elements (MGEs) within avian-borne Escherichia coli (n=241). By modelling the diversity of bacterial genes encoding virulence and antimicrobial resistance (AMR) against ecological and anthropogenic forms of urban environmental change, we demonstrate that communities of avian-borne bacterial genes are shaped by the assemblage of co-existing avian, livestock and human communities, and the habitat within which they exist. In showing that non-random processes structure bacterial genetic communities in urban wildlife, these findings suggest that it should be possible to forecast the effects of urban land-use change on microbial diversity

    Determining the neurotransmitter concentration profile at active synapses

    Get PDF
    Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission
    • …
    corecore