29 research outputs found

    Is the water footprint an appropriate tool for forestry and forest products: The Fennoscandian case

    Get PDF
    The water footprint by the Water Footprint Network (WF) is an ambitious tool for measuring human appropriation and promoting sustainable use of fresh water. Using recent case studies and examples from water-abundant Fennoscandia, we consider whether it is an appropriate tool for evaluating the water use of forestry and forest-based products. We show that aggregating catchment level water consumption over a product life cycle does not consider fresh water as a renewable resource and is inconsistent with the principles of the hydrologic cycle. Currently, the WF assumes that all evapotranspiration (ET) from forests is a human appropriation of water although ET from managed forests in Fennoscandia is indistinguishable from that of unmanaged forests. We suggest that ET should not be included in the water footprint of rain-fed forestry and forest-based products. Tools for sustainable water management should always contextualize water use and water impacts with local water availability and environmental sensitivity

    A stabilising control strategy for Cyber-Physical Power Systems

    Get PDF
    The cyber-physical nature of electric power systems has increased immensely over the last decades, with advanced communication infrastructure paving the way. It is now possible to design wide-area controllers, relying on remote monitor and control of devices, that can tackle power system stability problems more effectively than local controllers. However, their performance and security relies extensively on the communication infrastructure and can make power systems vulnerable to disturbances emerging on the cyber side of the system. In this paper, we investigate the effect of communication delays on the performance of wide-area damping controllers (WADC) designed to stabilise oscillatory modes in a Cyber-Physical Power System (CPPS). We propose a rule-based control strategy that combines wide-area and traditional local stabilising controllers to increase the performance and maintain the stable operation of CPPS. The proposed strategy is validated on a reduced CPPS equivalent model of Great-Britain (GB)

    Integral control for population management

    Get PDF
    We present a novel management methodology for restocking a declining population. The strategy uses integral control, a concept ubiquitous in control theory which has not been applied to population dynamics. Integral control is based on dynamic feedback-using measurements of the population to inform management strategies and is robust to model uncertainty, an important consideration for ecological models. We demonstrate from first principles why such an approach to population management is suitable via theory and examples

    Event-driven intermittent control

    No full text
    An intermittent controller with fixed sampling interval is recast as an event-driven controller. The key aspect of intermittent control that makes this possible is the use of basis functions, or, equivalently, a generalised hold, to generate the intersample open-loop control signal. The controller incorporates both feedforward events in response to known signals and feedback events in response to detected disturbances. The latter feature makes use of an extended basis-function generator to generate open-loop predictions of states to be compared with measured or observed states. Intermittent control is based on an underlying continuous-time controller; it is emphasised that the design of this continuous-time controller is important, particularly in the presence of input disturbances. Illustrative simulation examples are given

    Control of Bimanual Rhythmic Movements: Trading Efficiency for Robustness Depending on the Context

    Full text link
    This paper investigates how the efficiency and robustness of a skilled rhythmic task compete against each other in the control of a bimanual movement. Human subjects juggled a puck in 2D through impacts with two metallic arms, requiring rhythmic bimanual actuation. The arms kinematics were only constrained by the position, velocity and time of impacts while the rest of the trajectory did not influence the movement of the puck. In order to expose the task robustness, we manipulated the task context in two distinct manners: the task tempo was assigned at four different values (hence manipulating the time available to plan and execute each impact movement individually); and vision was withdrawn during half of the trials (hence reducing the sensory inflows). We show that when the tempo was fast, the actuation was rhythmic (no pause in the trajectory) while at slow tempo, the actuation was discrete (with pause intervals between individual movements). Moreover, the withdrawal of visual information encouraged the rhythmic behavior at the four tested tempi. The discrete versus rhythmic behavior give different answers to the efficiency/robustness trade-off: discrete movements result in energy efficient movements, while rhythmic movements impact the puck with negative acceleration, a property preserving robustness. Moreover, we report that in all conditions the impact velocity of the arms was negatively correlated with the energy of the puck. This correlation tended to stabilize the task and was influenced by vision, revealing again different control strategies. In conclusion, this task involves different modes of control that balance efficiency and robustness, depending on the context
    corecore