117 research outputs found

    Genomic screen for loci associated with tobacco usage in Mission Indians

    Get PDF
    BACKGROUND: The prevalence of tobacco usage in Native American adults and adolescents is higher than any other racial or ethnic group, yet biological risk and protective factors underlying tobacco use in this ethnic group remain unknown. A genome scan for loci associated with tobacco use phenotypes was performed with data collected from a community sample of Mission Indians residing in Southwest California. METHODS: A structured diagnostic interview was used to define two tobacco use phenotypes: 1) any regular tobacco usage (smoked daily for one month or more) and 2) persistent tobacco usage (smoked at least 10 cigarettes a day for more than one year). Heritability was determined and a linkage analysis was performed, using genotypes for a panel 791 microsatellite polymorphisms, for the two phenotypes using variance component methods implemented in SOLAR. RESULTS: Analyses of multipoint variance component LOD scores for the two tobacco use phenotypes revealed two scores that exceeded 2.0 for the regular use phenotype: one on chromosomes 6 and one on 8. Four other loci on chromosomes 1,7,13, and 22 were found with LOD scores between 1.0 and 1.5. Two loci of interest were found on chromosomes 1 and 4 for the persistent use phenotype with LOD scores between 1.3–1.5. Bivariate linkage analysis was conducted at the site on chromosome 4 for persistent tobacco use and an alcohol drinking severity phenotype previously identified at this site. The maximum LOD score for the bivariate analysis for the region was 3.4, however, there was insufficient power to exclude coincident linkage. CONCLUSION: While not providing evidence for linkage to specific chromosomal regions these results identify regions of interest in the genome in this Mission Indian population, for tobacco usage, some of which were identified in previous genome scans of non-native populations. Additionally, these data lend support for the hypothesis that cigarette smoking, alcohol dependence and other consumptive behaviors may share some common risk and/or protective factors in this Mission Indian population

    Corneal Alternations Induced by Topical Application of Benzalkonium Chloride in Rabbit

    Get PDF
    Benzalkonium chloride (BAC) is the most common preservative in ophthalmic preparations. Here, we investigated the corneal alternations in rabbits following exposure to BAC. Twenty-four adult male New Zealand albino rabbits were randomly divided into three groups. BAC at 0.01%, 0.05%, or 0.1% was applied twice daily to one eye each of rabbits for 4 days. The contralateral untreated eyes were used as control. Aqueous tear production and fluorescein staining scores of BAC-treated eyes were compared with those of controls. The structure of the central cornea was examined by in vivo confocal microscopy. Expression of mucin-5 subtype AC (MUC5AC) in conjunctiva was detected by immunostainig on cryosections. Corneal barrier function was assessed in terms of permeability to carboxy fluorescein (CF). The distribution and expression of ZO-1, a known marker of tight junction, and reorganization of the perijunctional actomyosin ring (PAMR) were examined by immunofluorescence analysis. Although there were no significant differences between control and BAC-treated eyes in Schirmer scores, corneal fluorescein scores and the number of conjunctival MUC5AC staining cells, in vivo confocal microscopy revealed significant epithelial and stromal defects in all BAC-treated corneas. Moreover, BAC at 0.1% resulted in significant increases in central corneal thickness and endothelial CF permeability, compared with those in control eyes, and endothelial cell damage with dislocation of ZO-1 and disruption of PAMR. Topical application of BAC can quickly impair the whole cornea without occurrence of dry eye. A high concentration of BAC breaks down the barrier integrity of corneal endothelium, concomitant with the disruption of PAMR and remodeling of apical junctional complex in vivo

    Rapid diagnostic tests as a source of DNA for Plasmodium species-specific real-time PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study describes the use of malaria rapid diagnostic tests (RDTs) as a source of DNA for <it>Plasmodium </it>species-specific real-time PCR.</p> <p>Methods</p> <p>First, the best method to recover DNA from RDTs was investigated and then the applicability of this DNA extraction method was assessed on 12 different RDT brands. Finally, two RDT brands (OptiMAL Rapid Malaria Test and SDFK60 malaria Ag <it>Plasmodium falciparum</it>/Pan test) were comprehensively evaluated on a panel of clinical samples submitted for routine malaria diagnosis at ITM. DNA amplification was done with the 18S rRNA real-time PCR targeting the four <it>Plasmodium </it>species. Results of PCR on RDT were compared to those obtained by PCR on whole blood samples.</p> <p>Results</p> <p>Best results were obtained by isolating DNA from the proximal part of the nitrocellulose component of the RDT strip with a simple DNA elution method. The PCR on RDT showed a detection limit of 0.02 asexual parasites/μl, which was identical to the same PCR on whole blood. For all 12 RDT brands tested, DNA was detected except for one brand when a low parasite density sample was applied. In RDTs with a plastic seal covering the nitrocellulose strip, DNA extraction was hampered. PCR analysis on clinical RDT samples demonstrated correct identification for single species infections for all RDT samples with asexual parasites of <it>P. falciparum </it>(n = 60), <it>Plasmodium vivax </it>(n = 10), <it>Plasmodium ovale </it>(n = 10) and <it>Plasmodium malariae </it>(n = 10). Samples with only gametocytes were detected in all OptiMAL and in 10 of the 11 SDFK60 tests. None of the negative samples (n = 20) gave a signal by PCR on RDT. With PCR on RDT, higher Ct-values were observed than with PCR on whole blood, with a mean difference of 2.68 for OptiMAL and 3.53 for SDFK60. Mixed infections were correctly identified with PCR on RDT in 4/5 OptiMAL tests and 2/5 SDFK60 tests.</p> <p>Conclusions</p> <p>RDTs are a reliable source of DNA for <it>Plasmodium </it>real-time PCR. This study demonstrates the best method of RDT fragment sampling for a wide range of RDT brands in combination with a simple and low cost extraction method, allowing RDT quality control.</p

    Mouse mutant phenotyping at scale reveals novel genes controlling bone mineral density.

    Get PDF
    The genetic landscape of diseases associated with changes in bone mineral density (BMD), such as osteoporosis, is only partially understood. Here, we explored data from 3,823 mutant mouse strains for BMD, a measure that is frequently altered in a range of bone pathologies, including osteoporosis. A total of 200 genes were found to significantly affect BMD. This pool of BMD genes comprised 141 genes with previously unknown functions in bone biology and was complementary to pools derived from recent human studies. Nineteen of the 141 genes also caused skeletal abnormalities. Examination of the BMD genes in osteoclasts and osteoblasts underscored BMD pathways, including vesicle transport, in these cells and together with in silico bone turnover studies resulted in the prioritization of candidate genes for further investigation. Overall, the results add novel pathophysiological and molecular insight into bone health and disease

    The mammalian gene function resource: the International Knockout Mouse Consortium.

    Get PDF
    In 2007, the International Knockout Mouse Consortium (IKMC) made the ambitious promise to generate mutations in virtually every protein-coding gene of the mouse genome in a concerted worldwide action. Now, 5 years later, the IKMC members have developed high-throughput gene trapping and, in particular, gene-targeting pipelines and generated more than 17,400 mutant murine embryonic stem (ES) cell clones and more than 1,700 mutant mouse strains, most of them conditional. A common IKMC web portal (www.knockoutmouse.org) has been established, allowing easy access to this unparalleled biological resource. The IKMC materials considerably enhance functional gene annotation of the mammalian genome and will have a major impact on future biomedical research

    Caenorhabditis briggsae Recombinant Inbred Line Genotypes Reveal Inter-Strain Incompatibility and the Evolution of Recombination

    Get PDF
    The nematode Caenorhabditis briggsae is an emerging model organism that allows evolutionary comparisons with C. elegans and exploration of its own unique biological attributes. To produce a high-resolution C. briggsae recombination map, recombinant inbred lines were generated from reciprocal crosses between two strains and genotyped at over 1,000 loci. A second set of recombinant inbred lines involving a third strain was also genotyped at lower resolution. The resulting recombination maps exhibit discrete domains of high and low recombination, as in C. elegans, indicating these are a general feature of Caenorhabditis species. The proportion of a chromosome's physical size occupied by the central, low-recombination domain is highly correlated between species. However, the C. briggsae intra-species comparison reveals striking variation in the distribution of recombination between domains. Hybrid lines made with the more divergent pair of strains also exhibit pervasive marker transmission ratio distortion, evidence of selection acting on hybrid genotypes. The strongest effect, on chromosome III, is explained by a developmental delay phenotype exhibited by some hybrid F2 animals. In addition, on chromosomes IV and V, cross direction-specific biases towards one parental genotype suggest the existence of cytonuclear epistatic interactions. These interactions are discussed in relation to surprising mitochondrial genome polymorphism in C. briggsae, evidence that the two strains diverged in allopatry, the potential for local adaptation, and the evolution of Dobzhansky-Muller incompatibilities. The genetic and genomic resources resulting from this work will support future efforts to understand inter-strain divergence as well as facilitate studies of gene function, natural variation, and the evolution of recombination in Caenorhabditis nematodes

    Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations

    Get PDF
    Microorganisms in the terrestrial deep biosphere host up to 20% of the earth's biomass and are suggested to be sustained by the gases hydrogen and carbon dioxide. A metagenome analysis of three deep subsurface water types of contrasting age (from &lt;20 to several thousand years) and depth (171 to 448 m) revealed phylogenetically distinct microbial community subsets that either passed or were retained by a 0.22 mu m filter. Such cells of &lt;0.22 mu m would have been overlooked in previous studies relying on membrane capture. Metagenomes from the three water types were used for reconstruction of 69 distinct microbial genomes, each with &gt;86% coverage. The populations were dominated by Proteobacteria, Candidate divisions, unclassified archaea and unclassified bacteria. The estimated genome sizes of the &lt;0.22 mu m populations were generally smaller than their phylogenetically closest relatives, suggesting that small dimensions along with a reduced genome size may be adaptations to oligotrophy. Shallow 'modern marine' water showed community members with a predominantly heterotrophic lifestyle. In contrast, the deeper, 'old saline' water adhered more closely to the current paradigm of a hydrogen-driven deep biosphere. The data were finally used to create a combined metabolic model of the deep terrestrial biosphere microbial community.Supplementary information available for this article at http://www.nature.com/ismej/journal/v10/n5/suppinfo/ismej2015185s1.html</p

    Associations between a polymorphism in the pleiotropic GCKR and Age-related phenotypes: the HALCyon programme.

    Get PDF
    Background: The glucokinase regulatory protein encoded by GCKR plays an important role in glucose metabolism and a single nucleotide polymorphism (SNP) rs1260326 (P446L) in the gene has been associated with several age-related biomarkers, including triglycerides, glucose, insulin and apolipoproteins. However, associations between SNPs in the gene and other ageing phenotypes such as cognitive and physical capability have not been reported. Methods: As part of the Healthy Ageing across the Life Course (HALCyon) collaborative research programme, men and women from five UK cohorts aged between 44 and 90+ years were genotyped for rs1260326. Meta-analysis was used to pool within-study genotypic associations between the SNP and several age-related phenotypes, including body mass index (BMI), blood lipid levels, lung function, and cognitive and physical capability. Results: We confirm the associations between the minor allele of the SNP and higher triglycerides and lower glucose levels. We also observed a triglyceride-independent association between the minor allele and lower BMI (pooled beta on zscore = 20.04, p-value = 0.0001, n = 16,251). Furthermore, there was some evidence for gene-environment interactions, including physical activity attenuating the effects on triglycerides. However, no associations were observed with measures of cognitive and physical capability. Conclusion: Findings from middle-aged to older adults confirm associations between rs1260326 GCKR and triglycerides and glucose, suggest possible gene-environment interactions, but do not provide evidence that its relevance extends to cognitive and physical capability
    corecore