1,307 research outputs found

    Extensive horizontal gene transfer during Staphylococcus aureus co-colonization in vivo.

    Get PDF
    Staphylococcus aureus is a commensal and major pathogen of humans and animals. Comparative genomics of S. aureus populations suggests that colonization of different host species is associated with carriage of mobile genetic elements (MGE), particularly bacteriophages and plasmids capable of encoding virulence, resistance, and immune evasion pathways. Antimicrobial-resistant S. aureus of livestock are a potential zoonotic threat to human health if they adapt to colonize humans efficiently. We utilized the technique of experimental evolution and co-colonized gnotobiotic piglets with both human- and pig-associated variants of the lineage clonal complex 398, and investigated growth and genetic changes over 16 days using whole genome sequencing. The human isolate survived co-colonization on piglets more efficiently than in vitro. During co-colonization, transfer of MGE from the pig to the human isolate was detected within 4 h. Extensive and repeated transfer of two bacteriophages and three plasmids resulted in colonization with isolates carrying a wide variety of mobilomes. Whole genome sequencing of progeny bacteria revealed no acquisition of core genome polymorphisms, highlighting the importance of MGE. Staphylococcus aureus bacteriophage recombination and integration into novel sites was detected experimentally for the first time. During colonization, clones coexisted and diversified rather than a single variant dominating. Unexpectedly, each piglet carried unique populations of bacterial variants, suggesting limited transmission of bacteria between piglets once colonized. Our data show that horizontal gene transfer occurs at very high frequency in vivo and significantly higher than that detectable in vitro

    Variation at the capsule locus, cps, of mistyped and non-typable Streptococcus pneumoniae isolates

    Get PDF
    The capsule polysaccharide locus (cps) is the site of the capsule biosynthesis gene cluster in encapsulated Streptococcus pneumoniae. A set of pneumococcal samples and non-pneumococcal streptococci from Denmark, the Gambia, the Netherlands, Thailand, the UK and the USA were sequenced at the cps locus to elucidate serologically mistyped or non-typable isolates. We identified a novel serotype 33B/33C mosaic capsule cluster and previously unseen serotype 22F capsule genes, disrupted and deleted cps clusters, the presence of aliB and nspA genes that are unrelated to capsule production, and similar genes in the non-pneumococcal samples. These data provide greater understanding of diversity at a locus which is crucial to the antigenic diversity of the pathogen and current vaccine strategies

    Multi-serotype pneumococcal nasopharyngeal carriage prevalence in vaccine naïve Nepalese children, assessed using molecular serotyping.

    Get PDF
    Invasive pneumococcal disease is one of the major causes of death in young children in resource poor countries. Nasopharyngeal carriage studies provide insight into the local prevalence of circulating pneumococcal serotypes. There are very few data on the concurrent carriage of multiple pneumococcal serotypes. This study aimed to identify the prevalence and serotype distribution of pneumococci carried in the nasopharynx of young healthy Nepalese children prior to the introduction of a pneumococcal conjugate vaccine using a microarray-based molecular serotyping method capable of detecting multi-serotype carriage. We conducted a cross-sectional study of healthy children aged 6 weeks to 24 months from the Kathmandu Valley, Nepal between May and October 2012. Nasopharyngeal swabs were frozen and subsequently plated on selective culture media. DNA extracts of plate sweeps of pneumococcal colonies from these cultures were analysed using a molecular serotyping microarray capable of detecting relative abundance of multiple pneumococcal serotypes. 600 children were enrolled into the study: 199 aged 6 weeks to <6 months, 202 aged 6 months to < 12 months, and 199 aged 12 month to 24 months. Typeable pneumococci were identified in 297/600 (49.5%) of samples with more than one serotype being found in 67/297 (20.2%) of these samples. The serotypes covered by the thirteen-valent pneumococcal conjugate vaccine were identified in 44.4% of samples containing typeable pneumococci. Application of a molecular serotyping approach to identification of multiple pneumococcal carriage demonstrates a substantial prevalence of co-colonisation. Continued surveillance utilising this approach following the introduction of routine use of pneumococcal conjugate vaccinates in infants will provide a more accurate understanding of vaccine efficacy against carriage and a better understanding of the dynamics of subsequent serotype and genotype replacement

    A computational strategy for the search of regulatory small RNAs in Actinobacillus pleuropneumoniae.

    Get PDF
    Bacterial regulatory small RNAs (sRNAs) play important roles in gene regulation and are frequently connected to the expression of virulence factors in diverse bacteria. Only a few sRNAs have been described for Pasteurellaceae pathogens and no in-depth analysis of sRNAs has been described for Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, responsible for considerable losses in the swine industry. To search for sRNAs in A. pleuropneumoniae, we developed a strategy for the computational analysis of the bacterial genome by using four algorithms with different approaches, followed by experimental validation. The coding strand and expression of 17 out of 23 RNA candidates were confirmed by Northern blotting, RT-PCR, and RNA sequencing. Among them, two are likely riboswitches, three are housekeeping regulatory RNAs, two are the widely studied GcvB and 6S sRNAs, and 10 are putative novel trans-acting sRNAs, never before described for any bacteria. The latter group has several potential mRNA targets, many of which are involved with virulence, stress resistance, or metabolism, and connect the sRNAs in a complex gene regulatory network. The sRNAs identified are well conserved among the Pasteurellaceae that are evolutionarily closer to A. pleuropneumoniae and/or share the same host. Our results show that the combination of newly developed computational programs can be successfully utilized for the discovery of novel sRNAs and indicate an intricate system of gene regulation through sRNAs in A. pleuropneumoniae and in other Pasteurellaceae, thus providing clues for novel aspects of virulence that will be explored in further studies

    Genomic variations define divergence of water/wildlife-associated Campylobacter jejuni niche specialists from common clonal complexes

    Get PDF
    Although the major food-borne pathogen Campylobacter jejuni has been isolated from diverse animal, human and environmental sources, our knowledge of genomic diversity in C. jejuni is based exclusively on human or human food-chain-associated isolates. Studies employing multilocus sequence typing have indicated that some clonal complexes are more commonly associated with particular sources. Using comparative genomic hybridization on a collection of 80 isolates representing diverse sources and clonal complexes, we identified a separate clade comprising a group of water/wildlife isolates of C. jejuni with multilocus sequence types uncharacteristic of human food-chain-associated isolates. By genome sequencing one representative of this diverse group (C. jejuni 1336), and a representative of the bank-vole niche specialist ST-3704 (C. jejuni 414), we identified deletions of genomic regions normally carried by human food-chain-associated C. jejuni. Several of the deleted regions included genes implicated in chicken colonization or in virulence. Novel genomic insertions contributing to the accessory genomes of strains 1336 and 414 were identified. Comparative analysis using PCR assays indicated that novel regions were common but not ubiquitous among the water/wildlife group of isolates, indicating further genomic diversity among this group, whereas all ST-3704 isolates carried the same novel accessory regions. While strain 1336 was able to colonize chicks, strain 414 was not, suggesting that regions specifically absent from the genome of strain 414 may play an important role in this common route of Campylobacter infection of humans. We suggest that the genomic divergence observed constitutes evidence of adaptation leading to niche specialization

    Dominant Role of Nucleotide Substitution in the Diversification of Serotype 3 Pneumococci over Decades and during a Single Infection

    Get PDF
    Streptococcus pneumoniae of serotype 3 possess a mucoid capsule and cause disease associated with high mortality rates relative to other pneumococci. Phylogenetic analysis of a complete reference genome and 81 draft sequences from clonal complex 180, the predominant serotype 3 clone in much of the world, found most sampled isolates belonged to a clade affected by few diversifying recombinations. However, other isolates indicate significant genetic variation has accumulated over the clonal complex’s entire history. Two closely related genomes, one from the blood and another from the cerebrospinal fluid, were obtained from a patient with meningitis. The pair differed in their behaviour in a mouse model of disease and in their susceptibility to antimicrobials, with at least some of these changes attributable to a mutation that upregulated the patAB efflux pump. This indicates clinically important phenotypic variation can accumulate rapidly through small alterations to the genotype

    The blp locus of Streptococcus pneumoniae plays a limited role in the selection of which strains can co-colonize the human nasopharynx.

    Get PDF
    Nasopharyngeal colonization is important for Streptococcus pneumoniae evolution, providing the opportunity for horizontal gene transfer when multiple strains co-occur. Although colonization with more than one strain of pneumococcus is common, the factors that influence the ability of strains to co-exist are not known. A highly variable blp (bacteriocin-like peptide) locus has been identified in all sequenced strains of S. pneumoniae This locus controls the regulation and secretion of bacteriocins, small peptides that target other bacteria. In this study, we analyzed a series of co-colonizing isolates to evaluate the impact of the blp locus on human colonization to determine whether competitive phenotypes of bacteriocin secretion restrict co-colonization.We identified a collection of 135 nasopharyngeal samples with two or more strains totaling 285 isolates. The blp locus of all strains was characterized genetically with regards to pheromone type, bacteriocin/immunity content and potential for locus functionality. Inhibitory phenotypes of bacteriocin secretion and locus activity were assessed through overlay assays. Isolates from single colonization (n=298) were characterized for comparison.Co-colonizing strains had a high diversity of blp cassettes; approximately one third displayed an inhibitory phenotype in vitro Despite in vitro evidence of competition, pneumococci co-colonized individuals independently of their blp pheromone type (p=0.577), bacteriocin/immunity content, blp locus activity (p=0.798) and inhibitory phenotype (p=0.716). In addition, no significant differences were observed when single and co-colonizing strains were compared.Despite clear evidence of blp-mediated competition in experimental models, our study suggests that the blp locus plays a limited role in restricting pneumococcal co-colonization in humans. IMPORTANCE: Nasopharyngeal colonization with Streptococcus pneumoniae (pneumococcus) is important for pneumococcal evolution as it represents the major site for horizontal gene transfer when multiple strains co-occur, a phenomenon known as co-colonization. Understanding how pneumococcal strains interact within the competitive environment of the nasopharynx is of chief importance in the context of pneumococcal ecology. In this study we used an unbiased collection of naturally co-occurring pneumococcal strains and showed that a biological process frequently used by bacteria for competition - bacteriocin production - is not decisive in the co-existence of pneumococci in the host, contrary to what has been shown in experimental models

    Natural Orifice Surgery (NOS) Using StomaphyXâ„¢ for Repair of Gastric Leaks after Bariatric Revisions

    Get PDF
    Gastric leaks represent serious complications of bariatric surgery. With the increasing popularity and performance of bariatric procedures, the incidence of leaks and associated complications are expected to increase. Minimally invasive natural orifice surgery represents a novel and promising approach to gastric leak management, especially for morbidly obese patients who are at much higher risk from open or laparoscopic surgical procedures. The present article reports two cases of the safe and successful use of the EndoGastric Solutions StomaphyX™ device to alter the flow of gastric contents and repair gastric leaks resulting from bariatric revision surgery. Both patients were at a high risk and could not undergo another open or laparoscopic surgery to correct the leaks that were not healing. The StomaphyX procedures lasted approximately 30 min, were performed without any complications, and resulted in the resolution of the gastric leaks in both patients

    Pneumococcal carriage in vaccine-eligible children and unvaccinated infants in Lao PDR two years following the introduction of the 13-valent pneumococcal conjugate vaccine.

    Get PDF
    Pneumococcal carriage is a prerequisite for disease, and underpins herd protection provided by pneumococcal conjugate vaccines (PCVs). There are few data on the impact of PCVs in lower income settings, particularly in Asia. In 2013, the Lao People's Democratic Republic (Lao PDR) introduced 13-valent PCV (PCV13) as a 3 + 0 schedule (doses at 6, 10 and 14 weeks of age) with limited catch-up vaccination. We conducted two cross-sectional carriage surveys (pre- and two years post-PCV) to assess the impact of PCV13 on nasopharyngeal pneumococcal carriage in 5-8 week old infants (n = 1000) and 12-23 month old children (n = 1010). Pneumococci were detected by quantitative real-time PCR, and molecular serotyping was performed using DNA microarray. Post PCV13, there was a 23% relative reduction in PCV13-type carriage in children aged 12-23 months (adjusted prevalence ratio [aPR] 0.77 [0.61-0.96]), and no significant change in non-PCV13 serotype carriage (aPR 1.11 [0.89-1.38]). In infants too young to be vaccinated, there was no significant change in carriage of PCV13 serotypes (aPR 0.74 [0.43-1.27]) or non-PCV13 serotypes (aPR 1.29 [0.85-1.96]), although trends were suggestive of indirect effects. Over 70% of pneumococcal-positive samples contained at least one antimicrobial resistance gene, which were more common in PCV13 serotypes (p < 0.001). In 12-23 month old children, pneumococcal density of both PCV13 serotypes and non-PCV13 serotypes was higher in PCV13-vaccinated compared with undervaccinated children (p = 0.004 and p < 0.001, respectively). This study provides evidence of PCV13 impact on carriage in a population without prior PCV7 utilisation, and provides important data from a lower-middle income setting in Asia. The reductions in PCV13 serotype carriage in vaccine-eligible children are likely to result in reductions in pneumococcal transmission and disease in Lao PDR
    • …
    corecore