84 research outputs found

    Evaluation of the current knowledge limitations in breast cancer research: a gap analysis

    Get PDF
    BACKGROUND A gap analysis was conducted to determine which areas of breast cancer research, if targeted by researchers and funding bodies, could produce the greatest impact on patients. METHODS Fifty-six Breast Cancer Campaign grant holders and prominent UK breast cancer researchers participated in a gap analysis of current breast cancer research. Before, during and following the meeting, groups in seven key research areas participated in cycles of presentation, literature review and discussion. Summary papers were prepared by each group and collated into this position paper highlighting the research gaps, with recommendations for action. RESULTS Gaps were identified in all seven themes. General barriers to progress were lack of financial and practical resources, and poor collaboration between disciplines. Critical gaps in each theme included: (1) genetics (knowledge of genetic changes, their effects and interactions); (2) initiation of breast cancer (how developmental signalling pathways cause ductal elongation and branching at the cellular level and influence stem cell dynamics, and how their disruption initiates tumour formation); (3) progression of breast cancer (deciphering the intracellular and extracellular regulators of early progression, tumour growth, angiogenesis and metastasis); (4) therapies and targets (understanding who develops advanced disease); (5) disease markers (incorporating intelligent trial design into all studies to ensure new treatments are tested in patient groups stratified using biomarkers); (6) prevention (strategies to prevent oestrogen-receptor negative tumours and the long-term effects of chemoprevention for oestrogen-receptor positive tumours); (7) psychosocial aspects of cancer (the use of appropriate psychosocial interventions, and the personal impact of all stages of the disease among patients from a range of ethnic and demographic backgrounds). CONCLUSION Through recommendations to address these gaps with future research, the long-term benefits to patients will include: better estimation of risk in families with breast cancer and strategies to reduce risk; better prediction of drug response and patient prognosis; improved tailoring of treatments to patient subgroups and development of new therapeutic approaches; earlier initiation of treatment; more effective use of resources for screening populations; and an enhanced experience for people with or at risk of breast cancer and their families. The challenge to funding bodies and researchers in all disciplines is to focus on these gaps and to drive advances in knowledge into improvements in patient care

    Adult weight change and premenopausal breast cancer risk: A prospective pooled analysis of data from 628,463 women.

    Get PDF
    Early-adulthood body size is strongly inversely associated with risk of premenopausal breast cancer. It is unclear whether subsequent changes in weight affect risk. We pooled individual-level data from 17 prospective studies to investigate the association of weight change with premenopausal breast cancer risk, considering strata of initial weight, timing of weight change, other breast cancer risk factors and breast cancer subtype. Hazard ratios (HR) and 95% confidence intervals (CI) were obtained using Cox regression. Among 628,463 women, 10,886 were diagnosed with breast cancer before menopause. Models adjusted for initial weight at ages 18-24 years and other breast cancer risk factors showed that weight gain from ages 18-24 to 35-44 or to 45-54 years was inversely associated with breast cancer overall (e.g., HR per 5 kg to ages 45-54: 0.96, 95% CI: 0.95-0.98) and with oestrogen-receptor(ER)-positive breast cancer (HR per 5 kg to ages 45-54: 0.96, 95% CI: 0.94-0.98). Weight gain from ages 25-34 was inversely associated with ER-positive breast cancer only and weight gain from ages 35-44 was not associated with risk. None of these weight gains were associated with ER-negative breast cancer. Weight loss was not consistently associated with overall or ER-specific risk after adjusting for initial weight. Weight increase from early-adulthood to ages 45-54 years is associated with a reduced premenopausal breast cancer risk independently of early-adulthood weight. Biological explanations are needed to account for these two separate factors

    Extra-pair parentage and personality in a cooperatively breeding bird

    Get PDF
    Why so much variation in extra-pair parentage occurs within and among populations remains unclear. Often the fitness costs and benefits of extra-pair parentage are hypothesised to explain its occurrence; therefore, linking extra-pair parentage with traits such as personality (behavioural traits that can be heritable and affect reproductive behaviour) may help our understanding. Here, we investigate whether reproductive outcomes and success are associated with exploratory behaviour in a natural population of cooperatively breeding Seychelles warblers (Acrocephalus sechellensis) on Cousin Island. Exploratory behaviour correlates positively with traits such as risk-taking behaviour and activity in other wild bird species and might promote extra-pair mating by increasing the rate at which potential extra-pair partners are encountered. We therefore predicted that fast-exploring individuals would have more extra-pair offspring. There is also a potential trade-off between pursuing extra-pair parentage and mate guarding in males. We therefore also predicted that fast-exploring males would be more likely to pursue extra-pair parentage and that this would increase the propensity of their mate to gain extra-pair parentage. We found that neither the total number of offspring nor the number of extra-pair offspring were associated with a male’s or female’s exploratory behaviour. However, there was a small but significant propensity for females to have extra-pair fertilisations in pairs that were behaviourally disassortative. Overall, we conclude that, due to the small effect size, the association between exploratory behaviour and extra-pair paternity is unlikely to be biologically relevant. Significance statement: True genetic monogamy is rare, even in socially monogamous systems, and multiple factors, such as behaviour, social structure, morphology and physiology, determined by the biological system can cause variation in extra-pair parentage (EPP). Therefore, investigating the inherent differences in these factors among individuals could be informative. We investigated whether reproductive outcomes/success are associated with differences in the propensity to explore novel environments/objects in a promiscuous, island-dwelling cooperatively breeding bird, the Seychelles warbler. Our results showed that exploratory behaviour was not associated with the number of offspring produced by an individual, and thus the long-term fitness consequences of different exploratory tendencies did not differ. We also found that the propensity to engage in EPP in females was higher in dissimilar behavioural pairs, but due to the small effect size, we hesitate to conclude that there are personality-dependent mating outcomes in the population

    Identification of G1-Regulated Genes in Normally Cycling Human Cells

    Get PDF
    BACKGROUND: Obtaining synchronous cell populations is essential for cell-cycle studies. Methods such as serum withdrawal or use of drugs which block cells at specific points in the cell cycle alter cellular events upon re-entry into the cell cycle. Regulatory events occurring in early G1 phase of a new cell cycle could have been overlooked. METHODOLOGY AND FINDINGS: We used a robotic mitotic shake-off apparatus to select cells in late mitosis for genome-wide gene expression studies. Two separate microarray experiments were conducted, one which involved isolation of RNA hourly for several hours from synchronous cell populations, and one experiment which examined gene activity every 15 minutes from late telophase of mitosis into G1 phase. To verify synchrony of the cell populations under study, we utilized methods including BrdU uptake, FACS, and microarray analyses of histone gene activity. We also examined stress response gene activity. Our analysis enabled identification of 200 early G1-regulated genes, many of which currently have unknown functions. We also confirmed the expression of a set of genes candidates (fos, atf3 and tceb) by qPCR to further validate the newly identified genes. CONCLUSION AND SIGNIFICANCE: Genome-scale expression analyses of the first two hours of G1 in naturally cycling cells enabled the discovery of a unique set of G1-regulated genes, many of which currently have unknown functions, in cells progressing normally through the cell division cycle. This group of genes may contain future targets for drug development and treatment of human disease

    The Transcription Factor YY1 Is a Substrate for Polo-Like Kinase 1 at the G2/M Transition of the Cell Cycle

    Get PDF
    Yin-Yang 1 (YY1) is an essential multifunctional zinc-finger protein. It has been shown over the past two decades to be a critical regulator of a vast array of biological processes, including development, cell proliferation and differentiation, DNA repair, and apoptosis. YY1 exerts its functions primarily as a transcription factor that can activate or repress gene expression, dependent on its spatial and temporal context. YY1 regulates a large number of genes involved in cell cycle transitions, many of which are oncogenes and tumor-suppressor genes. YY1 itself has been classified as an oncogene and was found to be upregulated in many cancer types. Unfortunately, our knowledge of what regulates YY1 is very minimal. Although YY1 has been shown to be a phosphoprotein, no kinase has ever been identified for the phosphorylation of YY1. Polo-like kinase 1 (Plk1) has emerged in the past few years as a major cell cycle regulator, particularly for cell division. Plk1 has been shown to play important roles in the G/M transition into mitosis and for the proper execution of cytokinesis, processes that YY1 has been shown to regulate also. Here, we present evidence that Plk1 directly phosphorylates YY1 in vitro and in vivo at threonine 39 in the activation domain. We show that this phosphorylation is cell cycle regulated and peaks at G2/M. This is the first report identifying a kinase for which YY1 is a substrate

    Inflammatory mechanisms in ischemic stroke: therapeutic approaches

    Get PDF
    Acute ischemic stroke is the third leading cause of death in industrialized countries and the most frequent cause of permanent disability in adults worldwide. Despite advances in the understanding of the pathophysiology of cerebral ischemia, therapeutic options remain limited. Only recombinant tissue-plasminogen activator (rt-PA) for thrombolysis is currently approved for use in the treatment of this devastating disease. However, its use is limited by its short therapeutic window (three hours), complications derived essentially from the risk of hemorrhage, and the potential damage from reperfusion/ischemic injury. Two important pathophysiological mechanisms involved during ischemic stroke are oxidative stress and inflammation. Brain tissue is not well equipped with antioxidant defenses, so reactive oxygen species and other free radicals/oxidants, released by inflammatory cells, threaten tissue viability in the vicinity of the ischemic core. This review will discuss the molecular aspects of oxidative stress and inflammation in ischemic stroke and potential therapeutic strategies that target neuroinflammation and the innate immune system. Currently, little is known about endogenous counterregulatory immune mechanisms. However, recent studies showing that regulatory T cells are major cerebroprotective immunomodulators after stroke suggest that targeting the endogenous adaptive immune response may offer novel promising neuroprotectant therapies

    Breast Cancer Risk After Recent Childbirth: A Pooled Analysis of 15 Prospective Studies.

    Get PDF
    Background Parity is widely recognized as protective for breast cancer, but breast cancer risk may be increased shortly after childbirth. Whether this risk varies with breastfeeding, family history of breast cancer, or specific tumor subtype has rarely been evaluated.Objective To characterize breast cancer risk in relation to recent childbirth.Design Pooled analysis of individual-level data from 15 prospective cohort studies.Setting The international Premenopausal Breast Cancer Collaborative Group.Participants Women younger than 55 years.Measurements During 9.6 million person-years of follow-up, 18 826 incident cases of breast cancer were diagnosed. Hazard ratios (HRs) and 95% CIs for breast cancer were calculated using Cox proportional hazards regression.Results Compared with nulliparous women, parous women had an HR for breast cancer that peaked about 5 years after birth (HR, 1.80 [95% CI, 1.63 to 1.99]) before decreasing to 0.77 (CI, 0.67 to 0.88) after 34 years. The association crossed over from positive to negative about 24 years after birth. The overall pattern was driven by estrogen receptor (ER)-positive breast cancer; no crossover was seen for ER-negative cancer. Increases in breast cancer risk after childbirth were pronounced when combined with a family history of breast cancer and were greater for women who were older at first birth or who had more births. Breastfeeding did not modify overall risk patterns.Limitations Breast cancer diagnoses during pregnancy were not uniformly distinguishable from early postpartum diagnoses. Data on human epidermal growth factor receptor 2 (HER2) oncogene overexpression were limited.Conclusion Compared with nulliparous women, parous women have an increased risk for breast cancer for more than 20 years after childbirth. Health care providers should consider recent childbirth a risk factor for breast cancer in young women.Primary funding source The Avon Foundation, the National Institute of Environmental Health Sciences, Breast Cancer Now and the UK National Health Service, and the Institute of Cancer Research

    Association of Body Mass Index and Age With Subsequent Breast Cancer Risk in Premenopausal Women.

    Get PDF
    Importance: The association between increasing body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) and risk of breast cancer is unique in cancer epidemiology in that a crossover effect exists, with risk reduction before and risk increase after menopause. The inverse association with premenopausal breast cancer risk is poorly characterized but might be important in the understanding of breast cancer causation. Objective: To investigate the association of BMI with premenopausal breast cancer risk, in particular by age at BMI, attained age, risk factors for breast cancer, and tumor characteristics. Design, Setting, and Participants: This multicenter analysis used pooled individual-level data from 758 592 premenopausal women from 19 prospective cohorts to estimate hazard ratios (HRs) of premenopausal breast cancer in association with BMI from ages 18 through 54 years using Cox proportional hazards regression analysis. Median follow-up was 9.3 years (interquartile range, 4.9-13.5 years) per participant, with 13 082 incident cases of breast cancer. Participants were recruited from January 1, 1963, through December 31, 2013, and data were analyzed from September 1, 2013, through December 31, 2017. Exposures: Body mass index at ages 18 to 24, 25 to 34, 35 to 44, and 45 to 54 years. Main Outcomes and Measures: Invasive or in situ premenopausal breast cancer. Results: Among the 758 592 premenopausal women (median age, 40.6 years; interquartile range, 35.2-45.5 years) included in the analysis, inverse linear associations of BMI with breast cancer risk were found that were stronger for BMI at ages 18 to 24 years (HR per 5 kg/m2 [5.0-U] difference, 0.77; 95% CI, 0.73-0.80) than for BMI at ages 45 to 54 years (HR per 5.0-U difference, 0.88; 95% CI, 0.86-0.91). The inverse associations were observed even among nonoverweight women. There was a 4.2-fold risk gradient between the highest and lowest BMI categories (BMI≥35.0 vs <17.0) at ages 18 to 24 years (HR, 0.24; 95% CI, 0.14-0.40). Hazard ratios did not appreciably vary by attained age or between strata of other breast cancer risk factors. Associations were stronger for estrogen receptor-positive and/or progesterone receptor-positive than for hormone receptor-negative breast cancer for BMI at every age group (eg, for BMI at age 18 to 24 years: HR per 5.0-U difference for estrogen receptor-positive and progesterone receptor-positive tumors, 0.76 [95% CI, 0.70-0.81] vs hormone receptor-negative tumors, 0.85 [95% CI: 0.76-0.95]); BMI at ages 25 to 54 years was not consistently associated with triple-negative or hormone receptor-negative breast cancer overall. Conclusions and Relevance: The results of this study suggest that increased adiposity is associated with a reduced risk of premenopausal breast cancer at a greater magnitude than previously shown and across the entire distribution of BMI. The strongest associations of risk were observed for BMI in early adulthood. Understanding the biological mechanisms underlying these associations could have important preventive potential
    • …
    corecore