2,583 research outputs found

    Wind-related orientation patterns in diurnal, crepuscular and nocturnal high-altitude insect migrants

    Get PDF
    Most insect migrants fly at considerable altitudes (hundreds of meters above the ground) where they utilize fast-flowing winds to achieve rapid and comparatively long-distance transport. The nocturnal aerial migrant fauna has been well studied with entomological radars, and many studies have demonstrated that flight orientations are frequently grouped around a common direction in a range of nocturnal insect migrants. Common orientation typically occurs close to the downwind direction (thus ensuring that a large component of the insects' self-powered speed is directed downstream), and in nocturnal insects at least, the downwind headings are seemingly maintained by direct detection of wind-related turbulent cues. Despite being far more abundant and speciose, the day-flying windborne migrant fauna has been much less studied by radar; thus the frequency of wind-related common orientation patterns and the sensory mechanisms involved in their formation remain to be established. Here, we analyze a large dataset of >600,000 radar-detected "medium-sized" windborne insect migrants (body mass from 10 to 70 mg), flying hundreds of meters above southern UK, during the afternoon, in the period around sunset, and in the middle of the night. We found that wind-related common orientation was almost ubiquitous during the day (present in 97% of all “migration events” analyzed), and was also frequent at sunset (85%) and at night (81%). Headings were systematically offset to the right of the flow at night-time (as predicted from the use of turbulence cues for flow assessment), but there was no directional bias in the offsets during the day or at sunset. Orientation "performance” significantly increased with increasing flight altitude throughout the day and night. We conclude by discussing sensory mechanisms which most likely play a role in the selection and maintenance of wind-related flight headings

    Adaptive strategies in nocturnally migrating insects and songbirds: contrasting responses to wind.

    Get PDF
    1. Animals that use flight as their mode of transportation must cope with the fact that their migration and orientation performance is strongly affected by the flow of the medium they are moving in, i.e. by the winds. Different strategies can be used to mitigate the negative effects and benefit from the positive effects of a moving flow. The strategies an animal can use will be constrained by the relationship between the speed of the flow and the speed of the animal’s own propulsion in relation to the surrounding air. 2. Here we analyse entomological and ornithological radar data from north-western Europe to investigate how two different nocturnal migrant taxa, the noctuid moth Autographa gamma and songbirds, deal with wind by analysing variation in resulting flight directions in relation to the wind-dependent angle between the animal’s heading and track direction. 3. Our results, from fixed locations along the migratory journey, reveal different global strategies used by moths and songbirds during their migratory journeys. As expected, nocturnally migrating moths experienced a greater degree of wind drift than nocturnally migrating songbirds, but both groups were more affected by wind in autumn than in spring. 4. The songbirds’ strategies involve elements of both drift and compensation, providing some benefits from wind in combination with destination and time control. In contrast, moths expose themselves to a significantly higher degree of drift in order to obtain strong wind assistance, surpassing the songbirds in mean ground speed, at the cost of a comparatively lower spatiotemporal migratory precision. 5. Moths and songbirds show contrasting but adaptive responses to migrating through a moving flow, which are fine-tuned to the respective flight capabilities of each group in relation to the wind currents they travel within

    Mass seasonal bioflows of high-flying insect migrants

    Get PDF
    Migrating animals have an impact on ecosystems directly via influxes of predators, prey, and competitors and indirectly by vectoring nutrients, energy, and pathogens. Although linkages between vertebrate movements and ecosystem processes have been established, the effects of mass insect "bioflows" have not been described. We quantified biomass flux over the southern United Kingdom for high-flying (>150 meters) insects and show that ~3.5 trillion insects (3200 tons of biomass) migrate above the region annually. These flows are not randomly directed in insects larger than 10 milligrams, which exploit seasonally beneficial tailwinds. Large seasonal differences in the southward versus northward transfer of biomass occur in some years, although flows were balanced over the 10 year period. Our long-term study reveals a major transport process with implications for ecosystem services, processes, and biogeochemistry

    Can sacrificial feeding areas protect aquatic plants from herbivore grazing? Using behavioural ecology to inform wildlife management

    Get PDF
    Effective wildlife management is needed for conservation, economic and human well-being objectives. However, traditional population control methods are frequently ineffective, unpopular with stakeholders, may affect non-target species, and can be both expensive and impractical to implement. New methods which address these issues and offer effective wildlife management are required. We used an individual-based model to predict the efficacy of a sacrificial feeding area in preventing grazing damage by mute swans (Cygnus olor) to adjacent river vegetation of high conservation and economic value. The accuracy of model predictions was assessed by a comparison with observed field data, whilst prediction robustness was evaluated using a sensitivity analysis. We used repeated simulations to evaluate how the efficacy of the sacrificial feeding area was regulated by (i) food quantity, (ii) food quality, and (iii) the functional response of the forager. Our model gave accurate predictions of aquatic plant biomass, carrying capacity, swan mortality, swan foraging effort, and river use. Our model predicted that increased sacrificial feeding area food quantity and quality would prevent the depletion of aquatic plant biomass by swans. When the functional response for vegetation in the sacrificial feeding area was increased, the food quantity and quality in the sacrificial feeding area required to protect adjacent aquatic plants were reduced. Our study demonstrates how the insights of behavioural ecology can be used to inform wildlife management. The principles that underpin our model predictions are likely to be valid across a range of different resource-consumer interactions, emphasising the generality of our approach to the evaluation of strategies for resolving wildlife management problems

    Evidence for a pervasive 'idling-mode' activity template in flying and pedestrian insects

    Get PDF
    Understanding the complex movement patterns of animals in natural environments is a key objective of ‘movement ecology’. Complexity results from behavioural responses to external stimuli but can also arise spontaneously in their absence. Drawing on theoretical arguments about decision-making circuitry, we predict that the spontaneous patterns will be scale-free and universal, being independent of taxon and mode of locomotion. To test this hypothesis, we examined the activity patterns of the European honeybee, and multiple species of noctuid moth, tethered to flight mills and exposed to minimal external cues. We also reanalysed pre-existing data for Drosophila flies walking in featureless environments. Across these species, we found evidence of common scale-invariant properties in their movement patterns; pause and movement durations were typically power law distributed over a range of scales and characterized by exponents close to 3/2. Our analyses are suggestive of the presence of a pervasive scale-invariant template for locomotion which, when acted on by environmental cues, produces the movements with characteristic scales observed in nature. Our results indicate that scale-finite complexity as embodied, for instance, in correlated random walk models, may be the result of environmental cues overriding innate behaviour, and that scale-free movements may be intrinsic and not limited to ‘blind’ foragers as previously thought

    Local radio to promote mental health awareness: a public health initiative.

    Get PDF
    BACKGROUND: Public health strategies have focused largely on physical health. However, there is increasing recognition that raising mental health awareness and tackling stigma is crucial to reduce disease burden. National campaigns have had some success but tackling issues locally is particularly important. AIMS: To assess the public's awareness and perception of the monthly BBC Cornwall mental health phone-in programmes that have run for 8.5 years in Cornwall, UK (population 530 000). METHOD: A consultation, review and feedback process involving a multiagency forum of mental and public health professionals, people with lived experience and local National Health Service trust's media team was used to develop a brief questionnaire. This was offered to all attendees at two local pharmacies covering populations of 27 000 over a 2-week period. RESULTS: In total, 14% (95% CI 11.9-16.5) were aware of the radio show, 11% (95% CI 9.0-13.1) have listened and the majority (76%) of those who listened did so more than once. The estimated reach is 70 000 people in the local population, of whom approximately 60 000 listen regularly. The show is highly valued among respondents with modal and median scores of 4 out of 5. CONCLUSIONS: Local radio is a successful, cost-effective and impactful way to reach a significant proportion of the population and likely to raise awareness, reduce stigma and be well received. The format has been adopted in other regions thus demonstrating easy transferability. It could form an essential part of a public health strategy to improve a population's mental well-being. DECLARATION OF INTEREST: W.H. received support from the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) for the South West Peninsula UK. The views expressed in this publication are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. L.R. and D.S. were involved in delivering the programmes but had no role in their evaluation

    Genomewide transcriptional signatures of migratory flight activity in a globally invasive insect pest

    Get PDF
    Migration is a key life history strategy for many animals and requires a suite of behavioural, morphological and physiological adaptations which together form the migratory syndrome'. Genetic variation has been demonstrated for many traits that make up this syndrome, but the underlying genes involved remain elusive. Recent studies investigating migration-associated genes have focussed on sampling migratory and nonmigratory populations from different geographic locations but have seldom explored phenotypic variation in a migratory trait. Here, we use a novel combination of tethered flight and next-generation sequencing to determine transcriptomic differences associated with flight activity in a globally invasive moth pest, the cotton bollworm Helicoverpa armigera. By developing a state-of-the-art phenotyping platform, we show that field-collected H.armigera display continuous variation in flight performance with individuals capable of flying up to 40km during a single night. Comparative transcriptomics of flight phenotypes drove a gene expression analysis to reveal a suite of expressed candidate genes which are clearly related to physiological adaptations required for long-distance flight. These include genes important to the mobilization of lipids as flight fuel, the development of flight muscle structure and the regulation of hormones that influence migratory physiology. We conclude that the ability to express this complex set of pathways underlines the remarkable flexibility of facultative insect migrants to respond to deteriorating conditions in the form of migratory flight and, more broadly, the results provide novel insights into the fundamental transcriptional changes required for migration in insects and other taxa

    Evaluating the importance of metamorphism in the foundering of continental crust

    Get PDF
    The metamorphic conditions and mechanisms required to induce foundering in deep arc crust are assessed using an example of representative lower crust in SW New Zealand. Composite plutons of Cretaceous monzodiorite and gabbro were emplaced at ~1.2 and 1.8 GPa are parts of the Western Fiordland Orthogneiss (WFO); examples of the plutons are tectonically juxtaposed along a structure that excised ~25 km of crust. The 1.8 GPa Breaksea Orthogneiss includes suitably dense minor components (e.g. eclogite) capable of foundering at peak conditions. As the eclogite facies boundary has a positive dP/dT, cooling from supra-solidus conditions (T > 950 ºC) at high-P should be accompanied by omphacite and garnet growth. However, a high monzodioritic proportion and inefficient metamorphism in the Breaksea Orthogneiss resulted in its positive buoyancy and preservation. Metamorphic inefficiency and compositional relationships in the 1.2 GPa Malaspina Pluton meant it was never likely to have developed densities sufficiently high to founder. These relationships suggest that the deep arc crust must have primarily involved significant igneous accumulation of garnet–clinopyroxene (in proportions >75%). Crustal dismemberment with or without the development of extensional shear zones is proposed to have induced foundering of excised cumulate material at P > 1.2 GPa
    corecore