17 research outputs found

    Solar parameters for modeling interplanetary background

    Full text link
    The goal of the Fully Online Datacenter of Ultraviolet Emissions (FONDUE) Working Team of the International Space Science Institute in Bern, Switzerland, was to establish a common calibration of various UV and EUV heliospheric observations, both spectroscopic and photometric. Realization of this goal required an up-to-date model of spatial distribution of neutral interstellar hydrogen in the heliosphere, and to that end, a credible model of the radiation pressure and ionization processes was needed. This chapter describes the solar factors shaping the distribution of neutral interstellar H in the heliosphere. Presented are the solar Lyman-alpha flux and the solar Lyman-alpha resonant radiation pressure force acting on neutral H atoms in the heliosphere, solar EUV radiation and the photoionization of heliospheric hydrogen, and their evolution in time and the still hypothetical variation with heliolatitude. Further, solar wind and its evolution with solar activity is presented in the context of the charge exchange ionization of heliospheric hydrogen, and in the context of dynamic pressure variations. Also the electron ionization and its variation with time, heliolatitude, and solar distance is presented. After a review of all of those topics, we present an interim model of solar wind and the other solar factors based on up-to-date in situ and remote sensing observations of solar wind. Results of this effort will further be utilised to improve on the model of solar wind evolution, which will be an invaluable asset in all heliospheric measurements, including, among others, the observations of Energetic Neutral Atoms by the Interstellar Boundary Explorer (IBEX).Comment: Chapter 2 in the planned "Cross-Calibration of Past and Present Far UV Spectra of Solar System Objects and the Heliosphere", ISSI Scientific Report No 12, ed. R.M. Bonnet, E. Quemerais, M. Snow, Springe

    Stroke Treatment Academic Industry Roundtable Recommendations for Individual Data Pooling Analyses in Stroke

    No full text
    Pooled analysis of individual patient data from stroke trials can deliver more precise estimates of treatment effect, enhance power to examine prespecified subgroups, and facilitate exploration of treatment-modifying influences. Analysis plans should be declared, and preferably published, before trial results are known. For pooling trials that used diverse analytic approaches, an ordinal analysis is favored, with justification for considering deaths and severe disability jointly. Because trial pooling is an incremental process, analyses should follow a sequential approach, with statistical adjustment for iterations. Updated analyses should be published when revised conclusions have a clinical implication. However, caution is recommended in declaring pooled findings that may prejudice ongoing trials, unless clinical implications are compelling. All contributing trial teams should contribute to leadership, data verification, and authorship of pooled analyses. Development work is needed to enable reliable inferences to be drawn about individual drug or device effects that contribute to a pooled analysis, versus a class effect, if the treatment strategy combines ≄2 such drugs or devices. Despite the practical challenges, pooled analyses are powerful and essential tools in interpreting clinical trial findings and advancing clinical care

    A evolução do conceito de operante

    No full text
    O conceito de operante surge nos anos 30 como necessidade, dada a dificuldade encontrada por Skinner para analisar seus dados usando como ferramenta o conceito de reflexo. O presente trabalho apresenta a evolução do conceito atĂ© o presente, quando a unidade de anĂĄlise nĂŁo tem mais a ver com a estrutura do comportamento: a nova ferramenta Ă© o conceito de contingĂȘncia trĂ­plice

    A review of measurement and modelling results of particle atmosphere–surface exchange

    No full text
    Atmosphere–surface exchange represents one mechanism by which atmospheric particle mass and number size distributions are modified. Deposition velocities (vd) exhibit a pronounced dependence on surface type, due in part to turbulence structure (as manifest in friction velocity), with minima of approximately 0.01 and 0.2 cm s−1 over grasslands and 0.1–1 cm s−1 over forests. However, as noted over 20 yr ago, observations over forests generally do not support the pronounced minimum of deposition velocity (vd) for particle diameters of 0.1–2 ÎŒm as manifest in theoretical predictions. Closer agreement between models and observations is found over less-rough surfaces though those data also imply substantially higher surface collection efficiencies than were originally proposed and are manifest in current models. We review theorized dependencies for particle fluxes, describe and critique model approaches and innovations in experimental approaches, and synthesize common conclusions of experimental and modelling studies. We end by proposing a number of research avenues that should be pursued in to facilitate further insights and development of improved numerical models of atmospheric particles
    corecore