86 research outputs found

    Linearly-realised Worldsheet Supersymmetry in pp-wave Background

    Get PDF
    We study the linearly-realised worldsheet supersymmetries in the ``massive'' type II light-cone actions for pp-wave backgrounds. The pp-waves have have 16+N_sup Killing spinors, comprising 16 ``standard'' Killing spinors that occur in any wave background, plus N_sup ``supernumerary'' Killing spinors (0\le N_sup \le 16) that occur only for special backgrounds. We show that only the supernumerary Killing spinors give rise to linearly-realised worldsheet supersymmetries after light-cone gauge fixing, while the 16 standard Killing spinors describe only non-linearly realised inhomogeneous symmetries. We also study the type II actions in the physical gauge, and we show that although in this case the actions are not free, there are now linearly-realised supersymmetries coming both from the standard and the supernumerary Killing spinors. In the physical gauge, there are no mass terms for any worldsheet degrees of freedom, so the masses appearing in the light-cone gauge may be viewed as gauge artefacts. We obtain type IIA and IIB supergravity solutions describing solitonic strings in pp-wave backgrounds, and show how these are related to the physical-gauge fundamental string actions. We study the supersymmetries of these solutions, and find examples with various numbers of Killing spinors, including total numbers that are odd.Comment: Latex, 35 page

    A unique Z_4^R symmetry for the MSSM

    Get PDF
    We consider the possible anomaly free Abelian discrete symmetries of the MSSM that forbid the mu-term at perturbative order. Allowing for anomaly cancellation via the Green-Schwarz mechanism we identify discrete R-symmetries as the only possibility and prove that there is a unique Z_4^R symmetry that commutes with SO(10). We argue that non-perturbative effects will generate a mu-term of electroweak order thus solving the mu-problem. The non-perturbative effects break the Z_4^R symmetry leaving an exact Z_2 matter parity. As a result dimension four baryon- and lepton-number violating operators are absent while, at the non-perturbative level, dimension five baryon- and lepton-number violating operators get induced but are highly suppressed so that the nucleon decay rate is well within present bounds.Comment: 6 page

    Toy model for a two-dimensional accretion disk dominated by Poynting flux

    Full text link
    We discuss the effect of the Poynting flow on the magnetically dominated thin accretion disk, which is simplified to a two-dimensional disk on the equatorial plane. It is shown in the relativistic formulation that the Poynting flux by the rotating magnetic field with Keplerian angular velocity can balance the energy and angular momentum conservation of a steady accretion flow.Comment: 17 pages, no figure

    Precise measurement of hadronic tau-decays with an eta meson

    Full text link
    We have studied hadronic tau decay modes involving an eta meson using 490 fb^{-1} of data collected with the Belle detector at the KEKB asymmetric-energy e+e- collider. The following branching fractions have been measured: B(tau- -> K- eta nu)=(1.58 +- 0.05 +- 0.09)x 10^{-4}, B(tau- -> K- pi0 eta nu)=(4.6 +- 1.1 +- 0.4)x 10^{-5}, B(tau- -> pi- pi0 eta nu)=(1.35 +- 0.03 +- 0.07)x 10^{-3}, B(tau- -> pi- KS eta nu)=(4.4 +- 0.7 +- 0.2)x 10^{-5}, and B(tau- -> K^{*-} eta nu)=(1.34 +- 0.12 +- 0.09)x 10^{-4}. These results are substantially more precise than previous measurements. The new measurements are compared with theoretical calculations based on the CVC hypothesis or the chiral perturbation theory. We also set upper limits on branching fractions for tau decays into K- KS eta nu, pi- KS pi0 eta nu, K- eta eta nu, pi- eta eta nu and non-resonant K- pi^0 eta nu final states.Comment: 24 pages, 7 figure

    Gravitational radiation from gamma-ray bursts as observational opportunities for LIGO and VIRGO

    Full text link
    Gamma-ray bursts are believed to originate in core-collapse of massive stars. This produces an active nucleus containing a rapidly rotating Kerr black hole surrounded by a uniformly magnetized torus represented by two counter-oriented current rings. We quantify black hole spin-interactions with the torus and charged particles along open magnetic flux-tubes subtended by the event horizon. A major output of Egw=4e53 erg is radiated in gravitational waves of frequency fgw=500 Hz by a quadrupole mass-moment in the torus. Consistent with GRB-SNe, we find (i) Ts=90s (tens of s, Kouveliotou et al. 1993), (ii) aspherical SNe of kinetic energy Esn=2e51 erg (2e51 erg in SN1998bw, Hoeflich et al. 1999) and (iii) GRB-energies Egamma=2e50 erg (3e50erg in Frail et al. 2001). GRB-SNe occur perhaps about once a year within D=100Mpc. Correlating LIGO/Virgo detectors enables searches for nearby events and their spectral closure density 6e-9 around 250Hz in the stochastic background radiation in gravitational waves. At current sensitivity, LIGO-Hanford may place an upper bound around 150MSolar in GRB030329. Detection of Egw thus provides a method for identifying Kerr black holes by calorimetry.Comment: to appear in PRD, 49

    Search for Resonant B±K±hK±γγB^{\pm}\to K^{\pm} h \to K^{\pm} \gamma \gamma Decays at Belle

    Get PDF
    We report measurements and searches for resonant B±K±hK±γγB^{\pm} \to K^{\pm} h \to K^{\pm} \gamma \gamma decays where hh is a η,η,ηc,ηc(2S),χc0,χc2,J/ψ\eta,\eta^{\prime},\eta_{c},\eta_{c}(2S),\chi_{c0},\chi_{c2},J/\psi meson or the X(3872) particle.Comment: accepted by Physics Letters

    Search for B+ -> D*+ pi0 decay

    Full text link
    We report on a search for the doubly Cabibbo suppressed decay B+ -> D*+ pi0, based on a data sample of 657 million BBbar pairs collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric energy e+ e- collider. We find no significant signal and set an upper limit of Br(B+ -> D*+ pi0) < 3.6 x 10^-6 at the 90% confidence level. This limit can be used to constrain the ratio between suppressed and favored B -> D* pi decay amplitudes, r < 0.051, at the 90% confidence level.Comment: 5pages, 2figures, submitted to PRL (v1); PRL published version (v2: minor corrections in the text

    Search for B -> h(*) nu nubar Decays at Belle

    Full text link
    We present a search for the rare decays B -> h(*) nu nubar, where h(*) stands for a light meson. A data sample of 535 million BBbar pairs collected with the Belle detector at the KEKB e+e- collider is used. Signal candidates are required to have an accompanying B meson fully reconstructed in a hadronic mode and signal-side particles consistent with a single h(*) meson. No significant signal is observed and we set upper limits on the branching fractions at 90% confidence level. The limits on B0 -> K*0 nu nubar and B+ -> K+ nu nubar decays are more stringent than the previous constraints, while the first searches for B0 -> K0 nu nubar, pi0 nu nubar, rho0 nu nubar, phi nu nubar and B+ -> K*+ nu nubar, rho+ nu nubar are reported.Comment: 6 pages, 2 figures, submit to PR

    Discrete R symmetries for the MSSM and its singlet extensions

    Full text link
    We determine the anomaly free discrete R symmetries, consistent with the MSSM, that commute with SU(5) and suppress the μ\mu parameter and nucleon decay. We show that the order M of such ZMRZ_M^R symmetries has to divide 24 and identify 5 viable symmetries. The simplest possibility is a Z4RZ_4^R symmetry which commutes with SO(10). We present a string-derived model with this Z4RZ_4^R symmetry and the exact MSSM spectrum below the GUT scale; in this model Z4RZ_4^R originates from the Lorentz symmetry of compactified dimensions. We extend the discussion to include the singlet extensions of the MSSM and find Z4RZ_4^R and Z8RZ_8^R are the only possible symmetries capable of solving the μ\mu problem in the NMSSM. We also show that a singlet extension of the MSSM based on a Z24RZ_{24}^R symmetry can provide a simultaneous solution to the μ\mu and strong CP problem with the axion coupling in the favoured window.Comment: 44+1 pages, 2 figure

    Search for Lepton Flavor Violating tau Decays into Three Leptons

    Full text link
    We search for lepton-flavor-violating tau decays into three leptons (electron or muon) using 535 fb-1 of data collected with the Belle detector at the KEKB asymmetric-energy e+e- collider. No evidence for these decays is observed, and we set 90% confidence level upper limits on the branching fractions of (2.0-4.1)x10^-8. These results improve upon our previously published upper limits by factors of 4.9 to 10.Comment: 11 pages, 4 figures, submitted to Phys. Lett.
    corecore