21 research outputs found

    Relativistic many-body calculations of electric-dipole matrix elements, lifetimes and polarizabilities in rubidium

    Full text link
    Electric-dipole matrix elements for ns-n'p, nd-n'p, and 6d-4f transitions in Rb are calculated using a relativistic all-order method. A third-order calculation is also carried out for these matrix elements to evaluate the importance of the high-order many-body perturbation theory contributions. The all-order matrix elements are used to evaluate lifetimes of ns and np levels with n=6, 7, 8 and nd levels with n=4, 5, 6 for comparison with experiment and to provide benchmark values for these lifetimes. The dynamic polarizabilities are calculated for ns states of rubidium. The resulting lifetime and polarizability values are compared with available theory and experiment.Comment: 8 pages, 2 figure

    Two-Photon Doppler cooling of alkaline-earth-metal and ytterbium atoms

    Full text link
    A new possibility of laser cooling of alkaline-earth-metal and Ytterbium atoms using a two-photon transition is analyzed. We consider a 1S0^{1}S_{0} - 1S0^{1}S_{0} transition, with excitation in near resonance with the 1P1^{1}P_{1} level. This greatly increases the two-photon transition rate, allowing an effective transfer of momentum. The experimental implementation of this technique is discussed and we show that for Calcium, for example, two-photon cooling can be used to achieve a Doppler limit of 123 microKelvin. The efficiency of this cooling scheme and the main loss mechanisms are analyzed.Comment: 7 pages, 5 figure

    Optical application and measurement of torque on microparticles of isotropic nonabsorbing material

    Get PDF
    We show how it is possible to controllably rotate or align microscopic particles of isotropic nonabsorbing material in a TEM00 Gaussian beam trap, with simultaneous measurement of the applied torque using purely optical means. This is a simple and general method of rotation, requiring only that the particle is elongated along one direction. Thus, this method can be used to rotate or align a wide range of naturally occurring particles. The ability to measure the applied torque enables the use of this method as a quantitative tool--the rotational equivalent of optical tweezers based force measurement. As well as being of particular value for the rotation of biological specimens, this method is also suitable for the development of optically-driven micromachines.Comment: 8 pages, 6 figure

    Discovery and functional prioritization of Parkinson's disease candidate genes from large-scale whole exome sequencing.

    Get PDF
    BACKGROUND: Whole-exome sequencing (WES) has been successful in identifying genes that cause familial Parkinson's disease (PD). However, until now this approach has not been deployed to study large cohorts of unrelated participants. To discover rare PD susceptibility variants, we performed WES in 1148 unrelated cases and 503 control participants. Candidate genes were subsequently validated for functions relevant to PD based on parallel RNA-interference (RNAi) screens in human cell culture and Drosophila and C. elegans models. RESULTS: Assuming autosomal recessive inheritance, we identify 27 genes that have homozygous or compound heterozygous loss-of-function variants in PD cases. Definitive replication and confirmation of these findings were hindered by potential heterogeneity and by the rarity of the implicated alleles. We therefore looked for potential genetic interactions with established PD mechanisms. Following RNAi-mediated knockdown, 15 of the genes modulated mitochondrial dynamics in human neuronal cultures and four candidates enhanced α-synuclein-induced neurodegeneration in Drosophila. Based on complementary analyses in independent human datasets, five functionally validated genes-GPATCH2L, UHRF1BP1L, PTPRH, ARSB, and VPS13C-also showed evidence consistent with genetic replication. CONCLUSIONS: By integrating human genetic and functional evidence, we identify several PD susceptibility gene candidates for further investigation. Our approach highlights a powerful experimental strategy with broad applicability for future studies of disorders with complex genetic etiologies
    corecore