17 research outputs found

    Spectra of weighted algebras of holomorphic functions

    Full text link
    We consider weighted algebras of holomorphic functions on a Banach space. We determine conditions on a family of weights that assure that the corresponding weighted space is an algebra or has polynomial Schauder decompositions. We study the spectra of weighted algebras and endow them with an analytic structure. We also deal with composition operators and algebra homomorphisms, in particular to investigate how their induced mappings act on the analytic structure of the spectrum. Moreover, a Banach-Stone type question is addressed.Comment: 25 pages Corrected typo

    Norm-attaining weighted composition operators on weighted Banach spaces of analytic functions

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00013-012-0458-zWe investigate weighted composition operators that attain their norm on weighted Banach spaces of holomorphic functions on the unit disc of type H∞. Applications for composition operators on weighted Bloch spaces are given. © 2012 Springer Basel.1. The authors are thankful to the referee for pointing to us the references [15] and [16] and their relevance in the present research. 2. The research of Bonet was partially supported by MICINN and FEDER Project MTM2010-15200 and by GV project Prometeo/2008/101 and project ACOMP/2012/090.Bonet Solves, JA.; Lindström, M.; Wolf, E. (2012). Norm-attaining weighted composition operators on weighted Banach spaces of analytic functions. Archiv der Mathematik. 99(6):537-546. https://doi.org/10.1007/s00013-012-0458-zS537546996Bierstedt K.D., Bonet J., Galbis A.: Weighted spaces of holomorphic functions on bounded domains. Michigan Math. J. 40, 271–297 (1993)Bierstedt K.D., Bonet J., Taskinen J.: Associated weights and spaces of holomorphic functions. Studia Math. 127, 137–168 (1998)J. Bonet, P. Domański, and M. Lindström, Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions. Canad, Math. Bull. 42, no. 2, (1999), 139–148Bonet J. et al.: Composition operators between weighted Banach spaces of analytic functions. J. Austral. Math. Soc. Ser. A 64, 101–118 (1998)Bonet J., Lindström M, Wolf E.: Isometric weighted composition operators on weighted Banach spaces of type H ∞. Proc. Amer. Math. Soc. 136, 4267–4273 (2008)Bonet J, Wolf E.: A note on weighted spaces of holomorphic functions. Archiv Math. 81, 650–654 (2003)Contreras M.D, Hernández-Díaz A.G.: Weighted composition operators in weighted banach spaces of analytic functions. J. Austral. Math. Soc. Ser. A 69, 41–60 (2000)Cowen C., MacCluer B.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton (1995)J. Diestel, Geometry of Banach Spaces. Selected Topics, Lecture Notes in Math. vol. 485, Springer, Berlin, 1975.Hammond C.: On the norm of a composition operator with linear fractional symbol. Acta Sci. Math. (Szeged) 69, 813–829 (2003)Hosokawa T., Izuchi K., Zheng D.: Isolated points and essential components of composition operators on H ∞. Proc. Amer. Math. Soc. 130, 1765–1773 (2001)Hosokava T., Ohno S.: Topological strusctures of the sets of composition operatorson the Bloch spaces. J. Math. anal. Appl. 303, 499–508 (2005)Lusky W.: On the isomorphy classes of weighted spaces of harmonic and holomorphic functions. Studia Math. 175, 19–45 (2006)Martín M.: Norm-attaining composition operators on the Bloch spaces. J. Math. Anal. Appl. 369, 15–21 (2010)A. Montes-Rodríguez, The Pick-Schwarz lemma and composition operators on Bloch spaces, International Workshop on Operator Theory (Cefalu, 1997), Rend. Circ. Mat. Palermo (2) Suppl. 56 (1998), 167–170.Montes-Rodríguez A.: The essential norm of a composition operator on Bloch spaces. Pacific J. Math. 188, 339–351 (1999)Montes-Rodríguez A.: Weighted composition operators on weighted Banach spaces of analytic functions. J. London Math. Soc. 61, 872–884 (2000)J.H. Shapiro, Composition Operators and Classical Function Theory, Springer, 1993.K. Zhu, Operator Theory in Function Spaces, Second Edition. Amer. Math. Soc., 2007

    The Cesàro operator in growth Banach spaces of analytic functions

    Full text link
    [EN] The CesA ro operator C, when acting in the classical growth Banach spaces and , for , of analytic functions on , is investigated. Based on a detailed knowledge of their spectra (due to A. Aleman and A.-M. Persson) we are able to determine the norms of these operators precisely. It is then possible to characterize the mean ergodic and related properties of C acting in these spaces. In addition, we determine the largest Banach space of analytic functions on which C maps into (resp. into ); this optimal domain space always contains (resp. ) as a proper subspace.The research of the first two authors was partially supported by the projects MTM2013-43540-P and GVA Prometeo II/2013/013.Albanese, A.; Bonet Solves, JA.; Ricker, WJ. (2016). The Cesàro operator in growth Banach spaces of analytic functions. Integral Equations and Operator Theory. 86(1):97-112. https://doi.org/10.1007/s00020-016-2316-zS97112861Albanese A.A., Bonet J., Ricker W.J.: Convergence of arithmetic means of operators in Fréchet spaces. J. Math. Anal. Appl. 401, 160–173 (2013)Albanese, A.A., Bonet, J.,Ricker, W.J.: The Cesàro operator on power series spaces. Preprint (2016)Albrecht E., Miller T.L., Neumann M.M.: Spectral properties of generalized Cesàro operators on Hardy and weighted Bergman spaces. Archiv Math. 85, 446–459 (2005)Aleman A.: A class of integral operators on spaces of analytic functions. In: Proc. of the Winter School in Operator Theory and Complex Analysis, Univ. Málaga Secr. Publ., Málaga, pp. 3–30 (2007)Aleman A., Constantin O.: Spectra of integration operators on weighted Bergman spaces. J. Anal. Math. 109, 199–231 (2009)Aleman A., Persson A.-M.: Resolvent estimates and decomposable extensions of generalized Cesàro operators. J. Funct. Anal. 258, 67–98 (2010)Aleman A., Siskakis A.G.: An integral operator on H p . Complex Var. Theory Appl. 28, 149–158 (1995)Aleman A., Siskakis A.G.: Integration operators on Bergman spaces. Indiana Univ. Math. J. 46, 337–356 (1997)Bayart F., Matheron E.: Dynamics of Linear Operators. Cambridge University Press, Cambridge (2009)Bierstedt K.D., Bonet J., Galbis A.: Weighted spaces of holomorphic functions on balanced domains. Michigan Math. J. 40, 271–297 (1993)Bierstedt K.D., Bonet J., Taskinen J.: Associated weights and spaces of holomorphic functions. Studia Math. 127, 137–168 (1998)Bierstedt, K.D., Summers, W.H.: Biduals of weighted Banach spaces of analytic functions. J. Aust. Math. Soc. 54, 70–79 (1993)Bonet J., Domanski P., Lindström M.: Essential norm and weak compactness on weighted Banach spaces of analytic functions. Can. Math. Bull. 42, 139–148 (1999)Curbera G.P., Ricker W.J.: Extensions of the classical Cesàro operator on Hardy spaces. Math. Scand. 108, 279–290 (2011)Danikas N., Siskakis A.: The Cesàro operator on bounded analytic functions. Analysis 13, 295–299 (1993)Duren P.: Theory of H p Spaces. Academic Press, New York (1970)Dunford N., Schwartz J.T.:Linear Operators I: General Theory, 2nd Printing. Wiley Interscience Publ., New York (1964)Grosse-Erdmann K., Peris A.: Linear Chaos. Springer, London (2011)Harutyunyan A., Lusky W.: On the boundedness of the differentiation operator between weighted spaces of holomorphic functions. Studia Math. 184, 233–247 (2008)Hedenmalm H., Korenblum B., Zhu K.: Theory of Bergman Spaces. Grad. Texts in Math., vol. 199. Springer, New York (2000)Katzelson Y., Tzafriri L.: On power bounded operators. J. Funct. Anal. 68, 313–328 (1968)Krengel U.: Ergodic Theorems. de Gruyter Studies in Mathematics, vol. 6. Walter de Gruyter Co., Berlin (1985)Lin M.: On the uniform ergodic theorem. Proc. Am. Math. Soc. 43, 337–340 (1974)Lusky W.: On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Studia Math. 175(1), 19–40 (2006)Megginson R.E.: An Introduction to Banach Space Theory. Springer, New York (1998)Meise R., Vogt D.: Introduction to Functional Analysis. Clarendon Press, Oxford (1997)Persson A.-M.: On the spectrum of the Cesàro operator on spaces of analytic functions. J. Math. Anal. Appl. 340, 1180–1203 (2008)Rubel L.A., Shields A.L.: The second dual of certain spaces of analytic functions. J. Aust. Math. Soc. 11, 276–280 (1970)Shields A.L., Williams D.L.: Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 162, 287–302 (1971)Siskakis A.: Volterra operators on spaces of analytic functions—a survey. In: Proc. of the First Advanced Course in Operator Theory and Complex Analysis, Univ. Sevilla Serc. Publ., Seville, pp. 51–68 (2006

    On realcompact topological vector spaces

    Get PDF
    [EN] This survey paper collects some of older and quite new concepts and results from descriptive set topology applied to study certain infinite-dimensional topological vector spaces appearing in Functional Analysis, including Frechet spaces, (L F)-spaces, and their duals, (D F)-spaces and spaces of continuous real-valued functions C(X) on a completely regular Hausdorff space X. Especially (L F)-spaces and their duals arise in many fields of Functional Analysis and its applications, for example in Distributions Theory, Differential Equations and Complex Analysis. The concept of a realcompact topological space, although originally introduced and studied in General Topology, has been also studied because of very concrete applications in Linear Functional Analysis.The research for the first named author was (partially) supported by Ministry of Science and Higher Education, Poland, Grant no. NN201 2740 33 and for the both authors by the project MTM2008-01502 of the Spanish Ministry of Science and Innovation.Kakol, JM.; López Pellicer, M. (2011). On realcompact topological vector spaces. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas. 105(1):39-70. https://doi.org/10.1007/s13398-011-0003-0S39701051Argyros S., Mercourakis S.: On weakly Lindelöf Banach spaces. Rocky Mountain J. Math. 23(2), 395–446 (1993). doi: 10.1216/rmjm/1181072569Arkhangel’skii, A. V.: Topological Function Spaces, Mathematics and its Applications, vol. 78, Kluwer, Dordrecht (1992)Batt J., Hiermeyer W.: On compactness in L p (μ, X) in the weak topology and in the topology σ(L p (μ, X), L p (μ,X′)). Math. Z. 182, 409–423 (1983)Baumgartner J.E., van Douwen E.K.: Strong realcompactness and weakly measurable cardinals. Topol. Appl. 35, 239–251 (1990). doi: 10.1016/0166-8641(90)90109-FBierstedt K.D., Bonet J.: Stefan Heinrich’s density condition for Fréchet spaces and the characterization of the distinguished Köthe echelon spaces. Math. Nachr. 35, 149–180 (1988)Cascales B.: On K-analytic locally convex spaces. Arch. Math. 49, 232–244 (1987)Cascales B., Ka̧kol J., Saxon S.A.: Weight of precompact subsets and tightness. J. Math. Anal. Appl. 269, 500–518 (2002). doi: 10.1016/S0022-247X(02)00032-XCascales B., Ka̧kol J., Saxon S.A.: Metrizability vs. Fréchet–Urysohn property. Proc. Am. Math. Soc. 131, 3623–3631 (2003)Cascales B., Namioka I., Orihuela J.: The Lindelöf property in Banach spaces. Stud. Math. 154, 165–192 (2003). doi: 10.4064/sm154-2-4Cascales B., Oncina L.: Compactoid filters and USCO maps. J. Math. Anal. Appl. 282, 826–843 (2003). doi: 10.1016/S0022-247X(03)00280-4Cascales B., Orihuela J.: On compactness in locally convex spaces, Math. Z. 195(3), 365–381 (1987). doi: 10.1007/BF01161762Cascales B., Orihuela J.: On pointwise and weak compactness in spaces of continuous functions. Bull. Soc. Math. Belg. Ser. B 40(2), 331–352 (1988) Journal continued as Bull. Belg. Math. Soc. Simon StevinDiestel J.: LX1{L^{1}_{X}} is weakly compactly generated if X is. Proc. Am. Math. Soc. 48(2), 508–510 (1975). doi: 10.2307/2040292van Douwen E.K.: Prime mappings, number of factors and binary operations. Dissertationes Math. (Rozprawy Mat.) 199, 35 (1981)Drewnowski L.: Resolutions of topological linear spaces and continuity of linear maps. J. Math. Anal. Appl. 335(2), 1177–1195 (2007). doi: 10.1016/j.jmaa.2007.02.032Engelking R.: General Topology. Heldermann Verlag, Lemgo (1989)Fabian, M., Habala, P., Hájek, P., Montesinos, V., Pelant, J., Zizler, V.: Functional Analysis and Infinite-Dimensional Geometry. Canadian Mathematical Society. Springer, Berlin (2001)Ferrando J.C.: A weakly analytic space which is not K-analytic. Bull. Aust. Math. Soc. 79(1), 31–35 (2009). doi: 10.1017/S0004972708000968Ferrando J.C.: Some characterization for υ X to be Lindelöf Σ or K-analytic in term of C p (X). Topol. Appl. 156(4), 823–830 (2009). doi: 10.1016/j.topol.2008.10.016Ferrando J.C., Ka̧kol J.: A note on spaces C p (X) K-analytic-framed in RX{\mathbb{R}^{X} } . Bull. Aust. Math. Soc. 78, 141–146 (2008)Ferrando J.C., Ka̧kol J., López-Pellicer M.: Bounded tightness conditions and spaces C(X). J. Math. Anal. Appl. 297, 518–526 (2004)Ferrando J.C., Ka̧kol J., López-Pellicer M.: A characterization of trans-separable spaces. Bull. Belg. Math. Soc. Simon Stevin 14, 493–498 (2007)Ferrando, J.C., Ka̧kol, J., López-Pellicer, M.: Metrizability of precompact sets: an elementary proof. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A. Mat. RACSAM 99(2), 135–142 (2005). http://www.rac.es/ficheros/doc/00173.pdfFerrando J.C., Ka̧kol J., López-Pellicer M., Saxon S.A.: Tightness and distinguished Fréchet spaces. J. Math. Anal. Appl. 324, 862–881 (2006). doi: 10.1016/j.jmaa.2005.12.059Ferrando J.C., Ka̧kol J., López-Pellicer M., Saxon S.A.: Quasi-Suslin weak duals. J. Math. Anal. Appl. 339(2), 1253–1263 (2008). doi: 10.1016/j.jmaa.2007.07.081Floret, K.: Weakly compact sets. Lecture Notes in Mathematics, vol. 801, Springer, Berlin (1980)Gillman L., Henriksen M.: Rings of continuous functions in which every finitely generated ideal is principial. Trans. Am. Math. Soc. 82, 366–391 (1956). doi: 10.2307/1993054Gillman L., Jerison M.: Rings of Continuous Functions. Van Nostrand Reinhold Company, New York (1960)Grothendieck A.: Sur les applications linéaires faiblement compactes d’espaces du type C(K). Can. J. Math. 5, 129–173 (1953)Gullick D., Schmets J.: Separability and semi-norm separability for spaces of bounded continuous functions. Bull. R. Sci. Lige 41, 254–260 (1972)Hager A.W.: Some nearly fine uniform spaces. Proc. Lond. Math. Soc. 28, 517–546 (1974). doi: 10.1112/plms/s3-28.3.517Howes N.R.: On completeness. Pacific J. Math. 38, 431–440 (1971)Isbell, J.R.: Uniform spaces. In: Mathematical Surveys 12, American Mathematical Society, Providence (1964)Ka̧kol J., López-Pellicer M.: Compact coverings for Baire locally convex spaces. J. Math. Anal. Appl. 332, 965–974 (2007). doi: 10.1016/j.jmaa.2006.10.045Ka̧kol, J., López-Pellicer, M.: A characterization of Lindelöf Σ-spaces υ X (preprint)Ka̧kol J., López-Pellicer M., Śliwa W.: Weakly K-analytic spaces and the three-space property for analyticity. J. Math. Anal. Appl. 362(1), 90–99 (2010). doi: 10.1016/j.jmaa.2009.09.026Ka̧kol J., Saxon S.: Montel (DF)-spaces, sequential (LM)-spaces and the strongest locally convex topology. J. Lond. Math. Soc. 66(2), 388–406 (2002)Ka̧kol J., Saxon S., Todd A.T.: Pseudocompact spaces X and df-spaces C c (X). Proc. Am. Math. Soc. 132, 1703–1712 (2004)Ka̧kol J., Śliwa W.: Strongly Hewitt spaces. Topology Appl. 119(2), 219–227 (2002). doi: 10.1016/S0166-8641(01)00063-3Khan L.A.: Trans-separability in spaces of continuous vector-valued functions. Demonstr. Math. 37, 61–67 (2004)Khan L.A.: Trans-separability in the strict and compact-open topologies. Bull. Korean Math. Soc. 45, 681–687 (2008). doi: 10.4134/BKMS.2008.45.4.681Khurana S.S.: Weakly compactly generated Fréchet spaces. Int. J. Math. Math. Sci. 2(4), 721–724 (1979). doi: 10.1155/S0161171279000557Kirk R.B.: A note on the Mackey topology for (C b (X)*,C b (X)). Pacific J. Math. 45(2), 543–554 (1973)Köthe G.: Topological Vector Spaces I. Springer, Berlin (1969)Kubiś W., Okunev O., Szeptycki P.J.: On some classes of Lindelöf Σ-spaces. Topol. Appl. 153(14), 2574–2590 (2006). doi: 10.1016/j.topol.2005.09.009Künzi H.P.A., Mršević M., Reilly I.L., Vamanamurthy M.K.: Pre-Lindelöf quasi-pseudo-metric and quasi-uniform spaces. Mat. Vesnik 46, 81–87 (1994)Megginson R.: An Introduction to Banach Space Theory. Springer, Berlin (1988)Michael E.: ℵ0-spaces. J. Math. Mech. 15, 983–1002 (1966)Nagami K.: Σ-spaces. Fund. Math. 61, 169–192 (1969)Narayanaswami P.P., Saxon S.A.: (LF)-spaces, quasi-Baire spaces and the strongest locally convex topology. Math. Ann. 274, 627–641 (1986). doi: 10.1007/BF01458598Negrepontis S.: Absolute Baire sets. Proc. Am. Math. Soc. 18(4), 691–694 (1967). doi: 10.2307/2035440Orihuela J.: Pointwise compactness in spaces of continuous functions. J. Lond. Math. Soc. 36(2), 143–152 (1987). doi: 10.1112/jlms/s2-36.1.143Orihuela, J.: On weakly Lindelöf Banach spaces. In: Bierstedt, K.D. et al. (eds.) Progress in Functional Analysis, pp. 279–291. Elsvier, Amsterdam (1992). doi: 10.1016/S0304-0208(08)70326-8Orihuela J., Schachermayer W., Valdivia M.: Every Readom–Nikodym Corson compact space is Eberlein compact. Stud. Math. 98, 157–174 (1992)Orihuela, J., Valdivia, M.: Projective generators and resolutions of identity in Banach spaces. Rev. Mat. Complut. 2(Supplementary Issue), 179–199 (1989)Pérez Carreras P., Bonet J.: Barrelled Locally Convex Spaces, Mathematics Studies 131. North-Holland, Amsterdam (1987)Pfister H.H.: Bemerkungen zum Satz über die separabilität der Fréchet-Montel Raüme. Arch. Math. (Basel) 27, 86–92 (1976). doi: 10.1007/BF01224645Robertson N.: The metrisability of precompact sets. Bull. Aust. Math. Soc. 43(1), 131–135 (1991). doi: 10.1017/S0004972700028847Rogers C.A., Jayne J.E., Dellacherie C., Topsøe F., Hoffman-Jørgensen J., Martin D.A., Kechris A.S., Stone A.H.: Analytic Sets. Academic Press, London (1980)Saxon S.A.: Nuclear and product spaces, Baire-like spaces, and the strongest locally convex topology. Math. Ann. 197(2), 87–106 (1972). doi: 10.1007/BF01419586Schawartz L.: Radom Measures on Arbitrary Topological Spaces and Cylindrical Measures. Oxford University Press, Oxford (1973)Schlüchtermann G., Wheller R.F.: On strongly WCG Banach spaces. Math. Z. 199(3), 387–398 (1988). doi: 10.1007/BF01159786Schlüchtermann G., Wheller R.F.: The Mackey dual of a Banach space. Note Math. 11, 273–287 (1991)Schmets, J.: Espaces de functions continues. Lecture Notes in Mathematics, vol 519, Springer-Verlag, Berlin-New York (1976)Talagrand M.: Sur une conjecture de H. H. Corson. Bull. Soc. Math. 99, 211–212 (1975)Talagrand M.: Espaces de Banach faiblement K-analytiques. Ann. Math. 110, 407–438 (1979)Talagrand M.: Weak Cauchy sequences in L 1(E). Am. J. Math. 106(3), 703–724 (1984). doi: 10.2307/2374292Tkachuk V.V.: A space C p (X) is dominated by irrationals if and only if it is K-analytic. Acta Math. Hungar. 107(4), 253–265 (2005)Tkachuk V.V.: Lindelöf Σ-spaces: an omnipresent class. RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A. Mat. 104(2), 221–244 (2010). doi: 10.5052/RACSAM.2010.15Todd A.R., Render H.: Continuous function spaces, (db)-spaces and strongly Hewitt spaces. Topol. Appl. 141, 171–186 (2004). doi: 10.1016/j.topol.2003.12.005Valdivia M.: Topics in Locally Convex Spaces, Mathematics Studies 67. North-Holland, Amsterdam (1982)Valdivia M.: Espacios de Fréchet de generación débilmente compacta. Collect. Math. 38, 17–25 (1987)Valdivia M.: Resolutions of identity in certain Banach spaces. Collect. Math. 38, 124–140 (1988)Valdivia M.: Resolutions of identity in certain metrizable locally convex spaces. Rev. R. Acad. Cienc. Exactas Fis. Nat. (Esp.) 83, 75–96 (1989)Valdivia M.: Projective resolutions of identity in C(K) spaces. Arch. Math. (Basel) 54, 493–498 (1990)Valdivia, M.: Resoluciones proyectivas del operador identidad y bases de Markusevich en ciertos espacios de Banach. Rev. R. Acad. Cienc. Exactas Fis. Nat. (Esp.) 84, 23–34Valdivia M.: Quasi-LB-spaces. J. Lond. Math. Soc. 35(2), 149–168 (1987). doi: 10.1112/jlms/s2-35.1.149Walker, R.C.: The Stone-Čech compactification Ergebnisse der Mathematik und ihrer Grenzgebiete. Band 83. Springer, Berlin (1974

    PLB-spaces of holomorphic functions with logarithmic growth conditions

    No full text
    Countable projective limits of countable inductive limits, called PLB-spaces, of weighted Banach spaces of continuous functions have recently been investigated by Agethen, Bierstedt and Bonet. In a previous article, the author extended their investigation to the case of holomorphic functions and characterized when spaces over the unit disc w.r.t. weights whose decay, roughly speaking, is neither faster nor slower than that of a polynomial are ultrabornological or barrelled. In this note, we prove a similar characterization for the case of weights which tend to zero logarithmically.Comment: Version of November 23, 2011. 9 page

    Some aspects of the modern theory of Fréchet spaces

    No full text

    (DF)-Spaces of type CB(X,E)CB(X, E) and CV‾(X,E)C\overline{V}(X, E)

    No full text
    Some locally convex properties of the spaces CB(X,E)CB( X, E) of the bounded continuous functions on a completely regular Hausdorff space X with values in a (DF-space) E are studied and applied to the (DF)-spaces of type CVˉ(X,E)C\bar{V}(X,E) (e.g., see [S]).The following are our main results: 1.CB(X,E)CB(X,E) is a (DF)-space if and only if E is a (DF)-space. 2.For a (DF)-space E, CB(X,E)CB(X,E) is quasi barrelled if and only if either (i)X is pseudocompact and E is quasibarrelled or (ii) X is not pseudocompact and the bounded subsets of E are metrizaable. 3. If V⊂C(X)\mathcal V ⊂ C(X) and if each vˉ∈Vˉ\bar{v}∈\bar{V} is dominated by some v~∈Vˉ∩C(X)\tilde{v}∈ \bar{V}∩ C(X), then CVˉ(X,E)C\bar{V}(X,E) (resp., CVˉ(X)⨂εEC\bar{V}(X)⨂_\varepsilon E) is a (DF)-space if and only if E is a (DF)-space. 4. Let X be a locally compact and σ-compact space, V⊂C(X)\mathcal V ⊂ C(X) and E a (DF)-space. Then CVˉ(X,E)C\bar{V}(X,E) is quasibarrelled if and only if (i) E is quasibarrelled and V\mathcal V satisfies condition (M,K)( M, K) or (ii) the bounded subsets of E are metrizable and V\mathcal V satisfies condition (D)
    corecore