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Abstract This survey paper collects some of older and quite new concepts and results
from descriptive set topology applied to study certain infinite-dimensional topological vec-
tor spaces appearing in Functional Analysis, including Fréchet spaces, (L F)-spaces, and their
duals, (DF)-spaces and spaces of continuous real-valued functions C(X) on a completely
regular Hausdorff space X . Especially (L F)-spaces and their duals arise in many fields of
Functional Analysis and its applications, for example in Distributions Theory, Differential
Equations and Complex Analysis. The concept of a realcompact topological space, although
originally introduced and studied in General Topology, has been also studied because of very
concrete applications in Linear Functional Analysis.
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1 Introduction

For a Tichonov space (also named completely regular Hausdorff space) X by C p(X) and
Cc(X) we denote the space of continuous realvalued maps on X with the pointwise and the
compact-open topology, respectively. By L p(X) we denote the ∗-weak dual of C p(X). If
F := { f ∈ C(X) : f (X) ⊂ [0, 1]}, then in [0, 1]F the subspace {( f (x) : f ∈ F) : x ∈ X}
is homeomorphic to X . We identify X with this subspace {( f (x) : f ∈ F) : x ∈ X} and the
closure of X in [0, 1]F is the Stone–Čech compactification of X , denoted by β X . Taking into
account the restrictions to β X of the coordinate projections of [0, 1]F we deduce that each
f ∈ F , and therefore each uniformly bounded f ∈ C(X) has a unique continuous extension
to β X .

By the realcompactification υ X of X we mean the subset of β X such that x ∈ υ X if,
and only if, each f ∈ C(X) admits a continuous extension to X ∪ {x}. From regularity it
follows that each f ∈ C(X) admits a continuous extension to υ X . Therefore the closure in
[0, 1]C(X) of

{( f (x) : f ∈ C(X)) : x ∈ X}
is homeomorphic to υ X .

By definition X is called realcompact if X = υ X . From the continuity of the coordinate
projections it follows that X is realcompact if, and only if, X is homeomorphic to a closed
subspace of a cartesian product of real lines. Every metric separable space is realcompact.
Clearly closed subspaces of a realcompact space are realcompact and also each product of
realcompact spaces is realcompact. The intersection of a family of realcompact subspaces
of a space is realcompact, because this intersection is homeomorphic to the diagonal of a
product.

The following well-known characterization of realcompact spaces will be used in the
sequel, see [16,28].

Proposition 1 A completely regular Hausdorff space X is realcompact if, and only if, for
every element x ∈ β X\X there exists h ∈ C(β X), h(X) ⊂]0, 1], i.e. which is positive on X
and h(x) = 0.

Proof Assume that the condition holds. Then

X =
⋂

{h−1
y ]0, 1] : y ∈ β X\X}.

As each h−1
y ]0, 1] is a realcompact subspace of β X (since h−1

y ]0, 1] is homeomorphic to

(β X×]0, 1]) ∩ G(hy),

where G(hy) means the graph of hy), then X is also realcompact. Conversely, if X is real-
compact and

x0 ∈ β X\X = β X\υ X,

then there exists a continuous function f : X → R which cannot be extended continuously
to X ∪ {x0}. From

f (x) = max( f (x), 0) + min( f (x), 0) = 1 + max( f (x), 0) − (1 − min( f (x), 0))

we know that one of the functions g1(x) = 1 + max( f (x), 0) or g2(x) = 1 − min( f (x), 0)

cannot be extended continuously to X ∪ {x0}. So (*) there exists a continuous function
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g : X → [1,∞[ which cannot be extended continuously to X ∪ {x0}. Let ĥ be a continuous
extension of the bounded function h := 1/g to β X . If ĥ(x0) 	= 0, then we get a contradiction
with (*). Hence ĥ(x0) = 0. 
�

Recall that a uniform space X is called trans-separable [31,33] if every uniform cover of
X has a countable subcover. Separable uniform spaces and Lindelöf uniform spaces are trans-
separable; the converse is not true in general although every trans-separable pseudometric
space is separable.

Clearly a uniform space is trans-separable if, and only if, it is uniformly isomorphic to
a subspace of a uniform product of separable pseudometric spaces. This implies that every
uniform quasi-Suslin space [71, Chapter 1, Sect. 4.2] is trans-separable. Note also that trans-
separable spaces enjoy good permanence properties. In particular, the class of trans-separable
spaces is hereditary, productive and closed under uniform continuous images, see [56].

For a topological vector space (tvs, in brief) E the trans-separability means that E is iso-
morphic to a subspace of the product of metrizable separable tvs. Thus, in particular if E is a
locally convex space (lcs, in brief), then the weak dual (E ′, σ (E ′, E)) of E is trans-separable.

It is easy to see that a tvs E is trans-separable if, and only if, for every neighborhood
of zero U in E there exists a countable subset N of E such that E = N + U , see for
example [30,46,57,58].

Also a tvs E is trans-separable if, and only if, for each continuous F-seminorm p on E
the F-seminormed space (E, p) is separable, or the associated F-normed space E/ ker p is
separable.

The concept of trans-separable spaces has been used to study several problems both from
analysis and topology, for example while studying the metrizability of precompact sets in
uniform spaces and in the class of lcs, we refer the reader to papers [12,15,21,22,40,41,58,
64]. Pfister [57] proved the following:

Proposition 2 A lcs E is trans-separable if, and only if, for every neighborhood of zero U
in E its polar U ◦ is σ(E ′, E)-metrizable.

This fact has been applied by Pfister [57] to show that precompact sets in (DF)-spaces
are metrizable.

Note the following link between realcompact and trans-separable space, see also related
results of this of type in [32].

Proposition 3 A completely regular topological Hausdorff space is realcompact if, and only
if, there exists an admissible uniformity N on X such that (X, N ) is trans-separable and
complete.

Proof If X is realcompact, then it is homeomorphic to a closed subset of R
C(X). Then the

induced uniformity in X is admissible complete and trans-separable. Conversely, if N is
a trans-separable, complete admissible uniformity on X , then (X, N ) is isomorphic to a
closed subspace of a product of metrizable separable (by trans-separability) uniform spaces.
Therefore X is realcompact. 
�

Proposition 1 may suggest the following concept which originally has been introduced by
Ka̧kol and Śliwa [39].

Definition 1 We shall say that X is strongly realcompact if for every sequence (xn)n of
elements in β X \ X there exists f ∈ C(β X) which is positive on X and vanishes on some
subsequence of (xn)n .
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Clearly every strongly realcompact space is realcompact. It is known [78, Exer. 1B. 4],
that if X is locally compact σ -compact, then β X \ X is a zero set in β X , so X is strongly
realcompact. Recall also that a subset A ⊂ X is said to be C-embedded ((C∗)-embedded) if
every real-valued continuous (bounded and continuous) function on A can be extended to a
continuous function on the whole space X .

For strongly realcompact spaces we note the following property. The proof presented
below from [39] uses an argument of Negrepontis [51] concerning [27, Theorem 2.7].

Proposition 4 If X is strongly realcompact, then every infinite subset D of β X\X contains
an infinite subset S which is relatively compact in β X \X and C∗-embedded in β X.

Proof Let (xn)n be an injective sequence in D (i.e. xn 	= xm if n 	= m) and let f : β X →
[0, 1] be a continuous function which is positive on X and vanishes on a subsequence of
(xn)n . Set

S = {xn : n ∈ N} ∩ f −1{0}, Yn = {x ∈ β X : | f (x)| ≥ n−1}, n ∈ N,

and

X1 = S ∪
⋃

n

Yn .

Note that the space X1 is regular and σ -compact. Hence it must be a normal space. But since
S is closed in X1, then so it is C∗-embedded in X1. Therefore S is C∗-embedded in β X1.
But X ⊂ X1 ⊂ β X . This yields the equality β X1 = β X . 
�

This fact implies that if X is a strongly realcompact space, then every infinite closed subset
of β X \X contains a copy of the space βN.

On the other hand, [4, Example 1.11] Baumgartner and van Douwen provided a sep-
arable first countable locally compact realcompact space X (hence strongly realcompact
by Theorem 1 below) for which β X \ X contains a discrete countable subset which is not
C∗-embedded in β X . This result with [4, Theorem 1.2] can be used to distinguish an exam-
ple of a locally compact realcompact space X such that β X \ X contains a sequence (xn)n

for which does not exist f ∈ C(β X) which is positive on X and vanishes on (xn)n . This
space provides an example of a locally compact realcompact space which is not strongly
realcompact.

The space Q of rational numbers is not strongly realcompact but applying [14] one gets
that βQ\Q is a βω-space, i.e. if D is a countable discrete subset of βQ\Q and D (the closure
in βQ\Q) is compact, then D = β D, so D is C∗-embedded in βQ. It is well-known [28]
that βQ\Q contains a countable subset which is not C∗-embedded in βQ.

A filter (filterbasis) F on a topological space X is said to be unbounded if there exists a
continuous real-valued function f on X which is unbounded on each element of F . Then f
is said to be unbounded on F .

The following general Theorem 1 below was obtained in [39], parts 1, 2, and [70] part 3.
To get property 3 from Theorem 1 we need the following two lemmas.

Lemma 1 A filter F on a topological space X is unbounded if, and only if, there exists
x ∈ ⋂

F∈F F \υ X, where the closure is taken in β X.

Proof Set

K :=
⋂

F∈F
F
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and assume by contradiction that K ⊂ υ X . But then for each continuous real-valued function
f on X there exists an open U f ⊂ β X such that K ⊂ U f and f |U f ∩ X is bounded. Note
that there exists F ∈ F contained in U f . Indeed, otherwise the family of sets

{F \U f : F ∈ F}
satisfies the finite intersection property which leads a point in K\U f . This is a contradiction.

Hence we proved that there exists F ∈ F which belongs to U f . This shows that F is not
unbounded.

To prove the converse assume that there exists x ∈ K \υ X . Since

υ X =
⋂

f ∈C(X)

υ f (X),

where

υ f (X) := {x ∈ β X : f β(x) 	= ∞},
[28, Problem 8B.3], then there exists f ∈ C(X) whose extension f β : β X → R∞, where
R∞ := R ∪ {∞} (the Alexandroff one-point compactification), has property that f ∞(x) =
∞. But x ∈ F for each F ∈ F , so this proves that f is unbounded on F . 
�
Lemma 2 Each unbounded filterbasis F on a topological space X is contained in an
unbounded ultrafilter U on X.

Proof If M := {M ⊂ X : ∃F ∈ F; F ⊂ M}, then M is an unbounded filter on X . By
Lemma 1 there exists

x ∈
⋂

F∈M
F \υ X.

Let A be the family of all filters G on X containing M and such that x ∈ ⋂
F∈G F . Ordering

A by inclusion, and since there exists a maximal chain in A its union U is an ultrafilter on X
containing F such that

x ∈
⋂

F∈U
F .

Using Lemma 1 one gets that U is unbounded on X . 
�
Clearly realcompact spaces of pointwise countable type need not be locally compact

spaces as the space R
N shows, Example 1 below. Recall that a topological space X is of

pointwise countable type [2] if each x ∈ X is contained in a compact set K ⊂ X of countable
character in X .

For strongly realcompact spaces the situation is different. Now we are ready to prove the
following characterization of strongly realcompact spaces.

Theorem 1 1. A topological space X is strongly realcompact if, and only if, it is realcom-
pact and β X\X is countably compact. Hence every locally compact realcompact space
is strongly realcompact.

2. Every strongly realcompact space of pointwise countable type is locally compact.
3. A realcompact space X is strongly realcompact if, and only if, for each sequence (Fn)n

of unbounded filters (filter bases) there exists a continuous real-valued function on X
and a subsequence (Fnk )k such that f is unbounded on each Fnk .
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Proof 1 Assume that X is a strongly realcompact space. Let P ⊂ β X \ X be an infinite set
and let (xn)n be an injective sequence in P . There exists a continuous function

f : β X → [0, 1]
which is positive on X and zero on some subsequence (xkn )n of (xn)n . Then we note

{xkn : n ∈ N} ⊂ f −1(0) ⊂ X∗.

Hence

{xkn : n ∈ N}d ⊂ f −1(0).

Note also that {xkn : n ∈ N}d is non-empty, where Ad is the set of all accumulation points of
A. This shows that P has an accumulation point.

Now we prove the converse. Assume that X is realcompact and every infinite subset of
β X \X has an accumulation point in β X \X .

Let (xn)n be a sequence in β X \ X . If P = {xn : n ∈ N} is finite, then the realcompact
property of X implies that there exists a continuous function f : β X → [0, 1] which is
positive on X and zero on a subsequence of (xn)n . If P = {xn : n ∈ N} is infinite, take
p ∈ Pd \X . Then there exists a continuous function

f : β X → [0, 1]
which is positive on X and vanishes on p. Note that for every r > 0 the set P ∩ f −1([0, r))

is infinite, since f −1([0, r)) is a neighbourhood of the point p ∈ Pd . Let us consider two
possible cases.

(1) The set P ∩ f −1(0) is infinite. In that case f is positive on X and zero on some
subsequence of the sequence (xn)n .

(2) The set P ∩ f −1(0) is finite. Since for every r > 0 the set P ∩ f −1([0, r)) is infinite,
then there exists an injective sequence (tn)n in P such that the sequence ( f (tn))n is strictly
decreasing and converges to zero. Let P0 = {tn : n ∈ N}, s0 = 1 and sk ∈ ( f (tk+1), f (tk))
for all k ∈ N. Then the sequence (sk)k is decreasing and converges to zero. Set

Fk = f −1([sk, sk−1])
for k ∈ N. Then Fk is compact and tk ∈ Fn if, and only if, k = n. Moreover,

X ⊂ f −1((0, 1]) =
⋃

k

Fk

and

P0 ∩ Fk = {tk}, k ∈ N.

If f (x) = c > 0, then x ∈ f −1((2−1c, 1]). Since f (tk) → 0, one gets that x /∈ Pd
0 . Hence,

if x ∈ Pd
0 , then x ∈ f −1(0). Hence x /∈ ⋃

k Fk . We showed that

Pd
0 ∩

(
⋃

k

Fk

)
= ∅.

But X is realcompact. Hence for every k ∈ N there exists a continuous function fk : β X →
[0, 1] which is positive on X and zero on tk . Next set

T k
n = f −1

k ([n−1, 1]), n, k ∈ N.
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Then

X ⊂ f −1
k ((0, 1]) =

⋃

n

T k
n

and tk /∈ T k
n for all k, n ∈ N. Moreover

X ⊂
⋃

k

Fk ∩ X ⊂
⋃

k

⋃

n

Fk ∩ T k
n , P0 ∩ (Fk ∩ T k

n ) ⊂ P0 ∩ Fk = {tk}.

But tk /∈ Fk ∩ T k
n , so

P0 ∩ (Fk ∩ T k
n ) = ∅

for all n, k ∈ N. Hence P0 ∩ W = ∅ and

Pd
0 ∩ W ⊂ Pd

0 ∩
⋃

k

Fk = ∅,

where W = ⋃
k,n Fk ∩ T k

n . Therefore we have P0 ∩ W = ∅. We showed that there exists an
infinite subset P0 of P and an infinite sequence of compact sets (Kn)n such that

X ⊂
⋃

n

Kn ⊂ β X,

(
⋃

n

Kn

)
∩ P0 = ∅.

For every n ∈ N let gn : β X → [0, 1] be a continuous function such that

gn |Kn = 1, gn |P0 = 0.

Put

g =
∑

n

2−ngn .

The function g : β X → [0, 1] is continuous, positive on X and zero on some subsequence
of the sequence (xn)n . This shows that for every sequence (xn)n in β X\X there exists a con-
tinuous function on β X which is positive on X and vanishes on some subsequence of (xn)n .

2 Assume that X is a strongly realcompact space of pointwise countable type but X is not
locally compact. Then there exist x0 ∈ X for which does not exist a relatively compact neigh-
bourhood but for x0 there exists a compact set K with x0 ∈ K and which admits a countable
(decreasing) basis (Un)n of neighbourhoods of K . For every n ∈ N choose xn ∈ (Un \ X),
where the closure is taken in β X . Note that

(β X \K ) ∩ {xn}d = ∅.

Indeed, let x ∈ (β X\K ). Let V ⊂ β X be an open neighbourhood of K such that x ∈ (β X\V ).
Then there exists n0 ∈ N such that Un0 ⊂ V ∩ X , so Un0 ⊂ V . Since

{xn}d ⊂ Un0 ⊂ V ,

then one gets that x ∈ β X\{xn}d . Hence {xn}d ⊂ K . Clearly {xn}d is non-empty. This shows
however that X is not strongly realcompact. A contradiction.

3 Assume that X is strongly realcompact and that each Fn is an unbounded filterbasis
on X . For each n ∈ N there exists an accumulation point of Fn , say xn ∈ β X \υ X . Since
X is a realcompact space, then υ X = X . But X is strongly realcompact, so there exists a
subsequence (xnk )k of (xn)n and a positive continuous function g ∈ C(X) such that g(x) ≤ 1
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and gβ(xnk ) = 0 for all k ∈ N. But then f := g−1 ∈ C(X). Hence f is unbounded on each
Fnk since

xnk ∈
⋂

F∈Fnk

F \υ f (X).

This proves one direction of the statement 3.
To prove the converse assume that (xn)n is a sequence in β X \ X . Then for each n ∈ N

there exists a filter Fn on X which converges to xn in the space β X . But

xn ∈
⋂

F∈Fn

F, xn /∈ X = υ X.

This shows that each Fn is unbounded on X . But by the assumption there exists a subsequence
(Fnk )k of (F)n and f ∈ C(X) which is unbounded on each Fnk . Set

g(x) := (1 + | f (x)|)−1

for each x ∈ X . Clearly the function g is positive on X and is continuous and bounded.
Therefore there exists a continuous extension gβ of g to β X and clearly gβ(xnk ) = 0. This
proves that X is strongly realcompact. The proof is completed. 
�

In [39] we presented the following example of a strongly realcompact space which is not
locally compact.

Example 1 There is a strongly realcompact space not locally compact. The space R
N is

realcompact and it is not strongly realcompact.

Proof Let P be a countably and non-empty subset of βN\N. Note that the subspace X :=
N ∪ P of βN is a Lindelöf space. Hence it is a realcompact space. On the other hand,
since every countably and closed subset of βN is finite, [78, p. 71], one gets that the space
β X\X = (βN\N)\P is countably compact. On the other hand X is not locally compact. Now
Theorem 1 applies to deduce that X is strongly realcompact. The second statement follows
directly from Theorem 1. 
�

The following theorem from [39] describes strongly realcompact spaces in term of C(X)

and applies to characterize bornological and Baire-like spaces Cc(X) for locally compact
spaces X . Recall that a lcs E is Baire-like [60] if for every increasing sequence (An)n of
absolutely convex closed sets covering E there exists m ∈ N such that Am is a neighbourhood
of zero in E .

Theorem 2 (i) If X is a strongly realcompact space, then Cc(X) is Baire-like and bor-
nological.

(ii) Consequently if X is locally compact, then Cc(X) is Baire-like and bornological if,
and only if, X is realcompact.

(iii) Let X be a space of pointwise countable type. Then Cc(X) is bornological and Baire-
like if, and only if, X is strongly realcompact.

We recall a few concepts which will be used in the sequel.
We shall say that X admits a compact resolution if there is a family {Kα : α ∈ N

N}
of compact sets covering X with Kα ⊂ Kβ if α ≤ β. If X is a lcs and Kα are bounded,
i.e. absorbed by neighbourhoods of zero of X , then {Kα : α ∈ N

N} is called a bounded
resolution.
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(a) A topological space X is a Lindelöf Σ-space if there is an upper semi-continuous (usco)
map from a (nonempty) subset Σ ⊂ N

N with compact values in X whose union is X ,
where the set of integers N is discrete and N

N has the product topology [2,45,49,69].
If the same holds for Σ = N

N, then X is called K -analytic.
(b) X is Σ-quasi-Suslin if there exists a set-valued map T from Σ ⊂ N

N into X covering
X such that if αn → α in Σ and xn ∈ T (αn), then (xn)n has a cluster point in T (α). If
Σ = N

N, then X is called a quasi-Suslin space, [71].

Note that half of Proposition 5 below is Lemma 29 of [19].

Proposition 5 If X is Σ-quasi-Suslin (quasi-Suslin), then υ X is Lindelöf Σ (K -analytic).
Hence X is Lindelöf Σ if, and only if, X is Lindelöf and Σ-quasi-Suslin.

Proof Let T be a map on Σ ⊂ N
N as in (b). Every T (α) is countably compact, so its closure

T (α) in υ X is compact. The map

α → T (α)

is (usco), so

Z :=
⋃

α∈Σ

T (α)

is Lindelöf Σ . Then Z is Lindelof and therefore Z = νZ . Since

X ⊂ Z ⊂ υ X,

then Z = υZ = υ X is Lindelöf Σ . The other case goes similarly for Σ = N
N. 
�

(c) X is web-compact [52] if there exists a nonempty subset Σ ⊂ N
N and a family {Aα :

α ∈ Σ} in X such that if

Cn1,...,nk :=
⋃

{Aβ : β = (mk) ∈ Σ, m j = n j , j = 1, . . . , k}
for α = (nk) ∈ Σ , then

⋃
{Aα : α ∈ Σ} = X,

and if α = (nk) ∈ Σ and xk ∈ Cn1,n2,...,nk , then (xk)k has a cluster point in X . All
Σ-quasi-Suslin spaces are web-compact. By [52, Theorem 3] the space C p(X) is angelic
if X is web-compact.

(d) X is web-bounding [52] if

X =
⋃

{Aα : α ∈ Σ}
such that if α = (nk) ∈ Σ and xk ∈ Cn1,n2,...,nk , then (xk)k is i.e., ( f (xk))k is bounded
for each f in C(X). If X = ⋃{Aα : α ∈ Σ}, then X is called strongly web-bounding.

(e) A lcs E is web-bounded if E is covered by a family {Aα : α ∈ Σ} of sets for Σ ⊂ N
N

such that if α = (nk) ∈ Σ and

xk ∈ Cn1,n2,...,nk ,

then (xk)k is bounded. Since Aα ⊂ Cn1,n2,...,nk , k ∈ N, then Aα are bounded. If X
is σ -bounded, i.e. covered by a sequence (Bk)k of bounding sets, then C p(X) has a
bounded resolution. Indeed, for α = (nk) ∈ N

N set

Aα =
⋂

k

{
f ∈ C (X) : sup

x∈Bk

| f (x)| ≤ nk

}
.
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In [20] we proved that a cosmic space X is σ -compact if, and only if, C p(X) has a
bounded resolution.

Clearly K -analytic ⇒ Lindelöf Σ ⇒ Lindelöf ⇒ realcompact. Every K -analytic space
has a compact resolution [66]; the converse fails [66].

The following implications below are obvious:

Quasi-Suslin or Lindelöf Σ �⇒ Σ-quasi-Suslin �⇒ web-compact.

The product R
R (as separable) provides a concrete example of a web-compact space

which is not Σ-quasi-Suslin, since R
R is realcompact but not Lindelöf and Proposition 5

above applies. There exist however Σ-quasi-Suslin (even quasi-Suslin) spaces which are not
Lindelöf Σ-spaces, see Remark 1 below.

In [35] we proved the following theorem describing Lindelöf Σ-spaces υ X . Note that the
equivalence ii ⇔ iii is essentially Theorem 3 and Proposition 9 from [19].

Theorem 3 For a Tichonov space X the following assertions are equivalent:

(i) X is strongly web-bounding.
(ii) υ X is a Lindelöf Σ-space

(iii) C p(X) is web-bounded.
(iv) L p(X) is web-bounded.
(v) C p(X) is a dense subspace of a lcs which is a Lindelöf Σ-space.

(vi) L p(υ X) is a Lindelöf Σ-space.
(vii) L p(υ X) is Σ-quasi-Suslin..

We note also the following fact from [35].

Proposition 6 Every lcs with a bounded resolution is web-bounded and every web-bounded
C p(X) is angelic.

Proof The first claim is clear. By Theorem 3 the space υ X is Lindelöf Σ . Since then υ X
is web-compact, then C p(υ X) is angelic [52, Theorem 2] and C p(X) is also angelic [12,
Note 4]. 
�

2 Locally convex spaces in class G

This section deals with the same problems studied in the previous part but in a more general
setting. First we recall the concept of the class G.

Following Cascales and Orihuela [12] a lcs E is said to be in class G if there is a family
{Aα : α ∈ N

N} of subsets of its topological dual E ′ (called its G-representation) such that:

(a) E ′ = ⋃{Aα : α ∈ N
N} ,

(b) Aα ⊂ Aβ when α ≤ β,
(c) in each Aα , sequences are equicontinuous,

Condition (c) implies that every set Aα is σ(E ′, E)-relatively countably compact. There-
fore the weak dual (E ′, σ (E ′, E)) of a lcs E in class G has a relatively countably compact
resolution. The class G contains (among the others) (L M)-spaces (hence (L F)-spaces), the
dual metric spaces (hence (DF)-spaces), the space of distributions D′(Ω) and the space
A(Ω) of the real analytic functions for open Ω ⊂ R

N, see e.g. [8,25].
The class G is stable by taking subspaces, separated quotients, completions, countable

direct sums and countable products [12].
Recall the following properties concerning spaces in class G.
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Proposition 7 (i) Let (En)n be a sequence of lcs in class G. Then the topological direct
sum E := ⊕

n En belongs to class G.
(ii) Let (En)n be a sequence of lcs in class G. Then the topological product E := ∏

n En

belongs to class G.
(iii) If E is a lcs in class G and F is a closed subspace, then the quotient space E/F

belongs to class G.
(iv) Every subspace F of a lcs E in class G belongs to class G.
(v) The completion F of a lcs E in class G belongs to class G.

Next we provide short arguments showing that (DF)-spaces and (L M)-spaces E admit
a G-representation [11]:

Let E be a (DF)-space. Let (Bn) be a fundamental sequence of absolutely convex bounded
subsets of a (DF)-space E . For every α = (nk) ∈ N

N set

Aα :=
⋂

k

nk(Bk)
◦.

Clearly conditions (a), (b) and (c) are satisfied. Note also that for a bounded subset B in
(E ′, β(E ′, E)) there exists α ∈ N

N such that Aα absorbs B.
Let E be an (L M)-space, i.e. the inductive limit of an increasing sequence (En)n of metriz-

able lcs. For every j ∈ N let (U j
n )n be a decreasing basis of absolutely convex neighborhoods

of zero in E j such that

U j
n+1 + U j

n+1 ⊂ U j
n

for all j , n ∈ N. For every α = (nk) ∈ N
N set

Aα :=
⋂

k

(U k
nk

)◦.

Clearly conditions (a), (b), (c) are satisfied and each bounded set B in the space (E ′, β(E ′, E))

is equicontinuous. Therefore its polar D is a neighborhood of zero in E . Hence there exists
a sequence α = (nk) in N

N such that

U 1
n1

+ U 2
n2

+ · · · + U k
nk

⊂ D

for any k ∈ N. Consequently

B ⊂ D◦ ⊂
⋂

k

(U k
nk

)◦.

Spaces in class G enjoy another important general property. Theorem 4 below has been
proved in [12] by Cascales and Orihuela; we add a simple and short proof due to Ferrando,
Ka̧kol and López-Pellicer from [23].

Theorem 4 Every precompact set in a lcs E in the class G is metrizable.

Proof Let {Aα : α ∈ N
N} be a G-representation of E . For α = (nk) ∈ N

N us set

Cn1,...,nk :=
⋃

{Aβ : β = (mk) ∈ N
N, n j = m j , 1 ≤ j ≤ k}.

Let P be a precompact set in E . Since the completion of a lcs in class G belongs to class G,
we may assume that the precompact set P is compact. Note that for each ε > 0 there is a
countable subset Hε in E ′ such that

E ′ = Hε + ε(P)◦.
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Indeed, assume this fails. Then (by Zorn’s lemma) there exist an uncountable subset F in
E ′ and ε > 0 such that the condition f − g ∈ ε(P)◦ for f , g ∈ F implies f = g. By an
obvious induction procedure we obtain a sequence (nk)k in N and a sequence ( fk)k in E ′ of
different elements with fk ∈ Cn1,n2,...,nk such that the condition

fn − fm ∈ ε(P)◦

implies m = n. Indeed, there exists n1 ∈ N such that F ∩ Cn1 is uncountable. Choose
f1 ∈ F ∩ Cn1 . Since

Cn1 =
⋃

{Cn1,m2 : m2 ∈ N},
there exists n2 ∈ N such that (F \{ f1}) ∩ Cn1,n2 is uncountable. Select

f2 ∈ (F \{ f1}) ∩ Cn1,n2 .

Using a simple induction we obtain both sequences as desired. But fk ∈ Cn1,n2,...,nk for
all k ∈ N, so the sequence ( fk)k is equicontinuous. Indeed, for every k ∈ N there exists
βk = (mk

n)n ∈ N
N such that fk ∈ Aβk , where n j = mk

j for j = 1, 2,…, k. Define

an = max
{

mk
n : k ∈ N

}

and γ = (an) ∈ N
N. Note that γ ≥ βk for every k ∈ N. Therefore Aβk ⊂ Aγ , so fk ∈ Aγ

for all k ∈ N (by condition (b)). Also by (c) the sequence ( fk)k is equicontinuous. By Ascoli
theorem for the Banach space Cc(P) one gets two different natural numbers j , k such that

f j − fk ∈ ε(P)◦,

which yields a contradiction. This proves the claim. Since

H := {Hn−1 : n ∈ N}
is countable, the topology τH on E of the pointwise convergence on H restricted to P is Haus-
dorff and metrizable and coincides with the original topology of P . Hence P is metrizable.
The proof is completed. 
�

In order to prove Proposition 8 (and then Proposition 9) we need the following result,
see [26, 3.1], due to Fremlin (called angelic lemma). First recall that a topological space X
is called angelic if every relatively countably compact set A in X is relatively compact and
for every x ∈ A there exists a sequence from A converging to x .

Theorem 5 Let X and Y be topological spaces where X regular, and let Φ : X → Y be
an injective and continuous map. If A ⊂ X is relatively countably compact and for each
B ⊂ Φ(A) and y ∈ B there exists a sequence (yn)n in B converging to y, then Φ(A) is
closed and Φ|A is a homeomorphism.

Since precompact sets in a lcs in class G are metrizable, then each lcs in class G is angelic.
The following stronger fact also holds, see [12, Theorem 11].

Proposition 8 Let E be a lcs such that (E ′, σ (E ′, E)) contains a total web-compact subset
X. Then (E, σ (E, E ′)) is angelic and every weakly compact subset of E is metrizable if, and
only if, it is contained in a separable subspace of E.
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Proof By [52, Theorem 3] the space C p(X) is angelic. Let A be a relatively countably
compact subset of (E, σ (E, E ′)) and let

Φ : (E, σ (E, E ′)) → C p(X)

be a continuous and injective map defined by restriction. Then Φ(A) is a relatively countably
compact subset of C p(X) and then, by the angelicity of C p(X) one gets that Φ(A) is compact
and for each subset B of Φ(A) and each b ∈ B there exists a sequence (bn)n in B such that
b = limn bn . Then, by Theorem 5 the set Φ(A) is closed, because Φ(A) = Φ(A) and Φ|A

is a homeomorphism. Therefore A is a compact subset of (E, σ (E, E ′)) and for each a ∈ A
there exists a sequence (an) in A such that a = limn an . This proves that (E, σ (E, E ′)) is
angelic. The rest of the proposition is straightforward. 
�

This yields the following general fact about spaces in class G.

Proposition 9 The weak topology σ(E, E ′) of a lcs E in class G is angelic.

A classical result of Kaplansky, see [26, Theorem, p. 37] states that if X is a σ -compact
space and Z is a metric space, then C p(X, Z) has countable tightness. This applies to show
that the weak topology of a metrizable lcs E has countable tightness, i.e., each adherent point
of every subset A is adherent point of a countable subset of A. Indeed, since E is metrizable,
then (E ′, σ (E ′, E)) is σ -compact, so C p((E ′, σ (E ′, E)) has countable tightness by Kaplan-
sky Theorem. Since we have (E, σ (E, E ′)) ⊂ C p((E ′, σ (E ′, E)), then (E, σ (E, E ′)) has
also countable tightness.

Valdivia [71] proved that if E is a Fréchet space and F is its strong dual, then the
space (F ′, σ (F ′, F)) is quasi-Suslin, although (F ′, σ (F ′, F)) is K -analytic if, and only if,
(F, μ(F, F ′)) is barrelled. Clearly F , as a (DF)-space, has a closed G-representation. This
result motivates next Theorem 6 which also extends [6, Proposition 1.1], see [25].

We shall say that a subset A ⊂ E is full if it contains all adherent points in E of sequences
from A. The following result from [25] provides many lcs E in class G whose weak dual
(E ′, σ (E ′, E)) is quasi-Suslin but not K -analytic. Early isolated examples of this type were
presented by Valdivia [71].

Theorem 6 Let E be a lcs in class G. Then (E ′, σ (E ′, E)) is a quasi-Suslin space.

Proof Let {Aα : α ∈ N
N} be a G-representation for E . For each α ∈ N

N define

Bα :=
⋃

{S◦◦ : S ⊂ Aα, |S| ≤ ℵ0}.
As countable unions of countable sets are countable, each sequence (un)n in Bα belongs

to a bipolar of a sequence (vn)n in in Aα which is clearly equicontinuous by the assumptions
on {Aα : α ∈ N

N}. Using the Alaoglu-Bourbaki and bipolar theorems one gets that the set
{vn : n ∈ N}◦◦ is absolutely convex, equicontinuous and σ(E ′, E)-compact. Hence Bα is
absolutely convex and (un)n has cluster points which belong to the set

{vn : n ∈ N}◦◦ ⊂ Bα.

This proves that Bα is absolutely convex, weakly countably compact and full. Also the family
{Bα : α ∈ N

N} is a G-representation of E . Now we are ready to apply [6, Proposition 1] to
deduce that E is quasi-Suslin. 
�

Theorem 6 can be used to provide a large class of lcs whose weak dual is K -analytic. First
we recall the following general fact, see [6].
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Lemma 3 Let X be an angelic space. Then E is quasi-Suslin if, and only if, X is K -analytic
if, and only if, X admits a compact resolution.

Now we note the following

Corollary 1 Let E be a locally convex space in class G such that (E, σ (E, E ′)) is web-
compact. Then (E ′, σ (E ′, E)) is K -analytic. In particular, every separable lcs in class G

has its precompact dual (E ′, τp) analytic.

Proof Since (E ′, σ (E ′, E)) is a subspace of C p(E, σ (E, E ′)) (the last space is angelic by
[52, Theorem 2]) we deduce that (E ′, σ (E ′, E)) is angelic. By Theorem 6 the space (E ′,
σ (E ′, E)) is quasi-Suslin. Now it is enough to apply Lemma 3 to complete the proof of the
first part of this corollary. The rest of the corollary is straightforward (see also Proposition 16).


�
Being motivated by Kaplansky result mentioned above we characterize those spaces in

class G which have countable tightness for the weak topology σ(E, E ′). We shall need the
following characterization of weakly realcompact lcs due to Corson, see [71, Page 137].

Proposition 10 Let (E, E ′) be a dual pair and let {Fi : i ∈ I } be the family of all separable
closed subspaces of (E ′, σ (E ′, E)). Then the following statements are equivalent:

(i) (E, σ (E, E ′)) is realcompact;
(ii) E = {x∗ ∈ (E ′)∗ : x∗|Fi is σ(E ′, E)-continuous for each i ∈ I }.

We need also the following simple

Lemma 4 Let E be a lcs whose weak topology σ(E, E ′) has countable tightness. Then
(E ′, σ (E ′, E)) is realcompact.

Proof By Corson criterium Proposition 10, it is enough to show that every linear functional
f on E which is σ(E, E ′)-continuous on each σ(E, E ′)-closed separable vector subspace
is continuous. Observe that the kernel K := f −1(0) is closed in E . In fact, if y ∈ K , then
there is countable D ⊂ K with y ∈ D (the closure in σ(E, E ′)). By assumption we have
f |lin(D) is σ(E, E ′)-continuous; hence

f (y) ∈ f (lin(D)) ⊂ f (K ) = {0},
so y ∈ K and f ∈ E ′. 
�

We are ready to prove the following important result from [7].

Theorem 7 Let E be a lcs in the class G. The following statements are equivalent:

(i) (E, σ (E, E ′)) has countable tightness;
(ii) (E ′, σ (E ′, E)) is realcompact.

(iii) (E ′, σ (E ′, E)) is K -analytic.
(iv) (E ′, σ (E ′, E))n is Lindelöf for every n ∈ N.
(v) (E ′, σ (E ′, E)) is Lindelöf.

Proof (i) ⇒ (ii): By Lemma 4 we know that (E ′, σ (E ′, E)) is realcompact.
(ii) ⇒ (iii): By Theorem 6 the weak dual (E ′, σ (E ′, E)) is quasi-Suslin. Now Proposition 5

implies that υ(E ′, σ (E ′, E)) = (E ′, σ (E ′, E)) is K -analytic.
(iii) ⇒ (iv): Any countably product of K -analytic spaces is K -analytic, so it is Lindelöf.
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(iv) ⇒ (v): Obvious.
(v) ⇒ (i): By Theorem 6 we know that (E ′, σ (E ′, E)) is quasi-Suslin. But every Lindelöf

quasi-Suslin space is K -analytic. By [2, Theorem I.1.1] the space C p((E ′, σ (E ′, E)) has
countable tightness. Therefore since we have (E, σ (E, E ′)) ⊂ C p((E ′, σ (E ′, E)) we note
that (E, σ (E, E ′)) has countable tightness as well. 
�

On the other hand, [7] we proved

Proposition 11 If E is a a locally convex quasibarrelled space in class G, then E and
(E, σ (E, E ′)) have countable tightness.

It turns out that for many spaces in class G the converse to Proposition 11 also holds.
In [24] we proved among other results the following

Proposition 12 Every (DF)-space with countable tightness is quasibarrelled.

Proof Let β∗(E, E ′) be the topology on E of uniform convergence on β(E ′, E)-bounded
sets and let ξ be the original topology of E . Clearly ξ ≤ β∗(E, E ′). To show that E is
quasibarrelled it is enough to show that β∗(E, E ′)|B = ξ |B for each ξ -bounded set B in
E , see [44, 29.3.(2)]. Let B be an absolutely convex ξ -closed ξ -bounded set. We show that
every β∗(E, E ′)-closed set D ⊂ B is ξ -closed. Let x ∈ D, where the closure is taken in ξ .
Since by assumption (E, ξ) has countable tightness, then there exists a countable set C ⊂ D
such that x ∈ C . Let C0 be the closed linear span of C ∪ {x}. Then

β∗(E, E ′)|C0 = ξ |C0

by [44, 29.3(8)]. Hence x belongs to the β∗(E, E ′)-closure of C , so x ∈ D. 
�
Remark 1 In [7] we provided examples of (DF)-spaces E whose weak topology σ(E, E ′)
does not have countable tightness. By 7 we deduce that (E ′, σ (E ′, E)) is not Lindelöf hence
is not a Lindelöf Σ-space. On the other hand, by Theorem 6 the space (E ′, σ (E ′, E)) is
quasi-Suslin.

Proposition 12 applies to provide another characterization for a Fréchet space to be a
distinguished space. Recall that a Fréchet space E is called distinguished if the strong dual
(E ′, β(E ′, E)) of E is quasibarrelled (equivalently barrelled or bornological), see [5]. Since
the strong dual (E ′, β(E ′, E)) of a Fréchet space E is a (DF)-space, then Proposition 12
yields the following characterization.

Proposition 13 A Fréchet space E is distinguished if, and only if, (E ′, β(E ′, E)) has count-
able tightness.

Last Proposition 13 has been used [24] to study non distinguished Köthe echelon spaces.
We showed in [35] also the following

Proposition 14 For a �∞-barrelled lcs E the following conditions are equivalent:

(i) (E ′, σ (E ′, E)) is a Lindelöf Σ-space.
(ii) (E, σ (E, E ′)) has countable tightness and E is covered by a family {Aα : α = (an) ∈

Σ} of sets for some Σ ⊂ N
N such that each sequence xk ∈ Cn1,nn ,...,nk is bounded in

E, where Cn1,nn ,...,nk := ⋃{Aβ = (bn) ∈ Σ : an = bn, n ≤ k}.
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Proposition 14 at the first glance looks somewhat technical but it covers many concrete
classes of topological vector spaces, for example each (d f )-space Cc(X) has its weak dual
Lindelöf Σ as �∞-barrelled by [38, Corollary 3.3] and having a family of sets as in (ii): If (Sn)n

is a fundamental sequence of bounded sets in Cc(X) set Aα := ⋂
n an Sn for α = (an) ∈ N

N.
From the definition of the property to be in class G it follows that E ′ admits a resolution

consisting of σ(E ′, E)-relatively countable compact sets. This implies that (E ′, σ (E ′, E))

is web-compact in sense of Orihuela [52]. But then by [52, Theorem 3] it follows that
C p((E ′, σ (E ′, E)) is angelic. Hence

(E, σ (E, E ′)) ⊂ C p((E ′, σ (E ′, E))

is angelic (this property is a particular case of Proposition 8). This fact covers many of impor-
tant classes of spaces except spaces C p(X). Indeed, in [8] we proved that C p(X) for uncount-
able spaces X does not belong to class G. Nevertheless, it is known that C p(X, E) is weakly
angelic for any web-compact X and lcs E in class G, see [11, Theorem 8, Corollary 1.8]. We
provide a direct proof of this fact.

Proposition 15 If X is a web-compact space and E is a lcs in class G, then C p(X, E) is
weakly angelic. If E ∈ G is separable and C p(X) is angelic, then C p(X, Eσ ) is also angelic,
where Eσ means (E, σ (E, E ′)).

Proof Let {Aα : α ∈ Σ} be a web-compact representation for X . Set G := C p(X, E). By
Proposition 8 it is enough to show that (G ′, σ (G ′, G)) contains a total web-compact subset.
If (gt )t → g in C p(X, E), then for each s ∈ X and each x ′ ∈ E ′ we have that

(x ′gt (s))t → x ′g(s).

Therefore the map

δsx ′ : C p(X, E) → R

defined by

δsx ′(g) := x ′g(s)

is continuous. The set

Z := {δsx ′ : s ∈
⋃

{Aα : α ∈ Σ}, x ′ ∈ E ′}
is a total subset of (G ′, σ (G ′, G)). Indeed, if f ∈ C p(X, E) and

0 = δsx ′( f ) = x ′ f (s)

for each s ∈ ⋃{Aα : α ∈ Σ} and x ′ ∈ E ′, then f (s) = 0 for each s ∈ ⋃{Aα : α ∈ Σ}.
Then by continuity, f (s) = 0 for each s ∈ X . This implies that f = 0. Hence Z is a total
subset.

Let E ′ = ⋃{Bβ : β ∈ N
N} be a G-representation of E . Then

Z =
⋃

{Dαβ : (α, β) ∈ Σ × N
N},

where

Dαβ = {δsx ′ : s ∈ Aα, x ′ ∈ Bβ}.
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To prove that the σ(G ′, G)-closure of Z is a web-compact subspace of (G ′, σ (G ′, G)) we
need to prove that if ((αn, βn))n → (α, β) in Σ × N

N and for each n ∈ N

δsn x ′
n

∈ Dαnβn

then the sequence (δsn x ′
n
)n has an adherent point in (G ′, σ (G ′, G)). As

((αn, βn))n → (α, β)

we have that {sn : n ∈ N} is a relatively countably compact subset of X and {x ′
n : n ∈ N} is

an equicontinuous subset of Bγ , being γ an element of N
N that verifies that βn ≤ γ for each

n ∈ N. Then the sequence (δsn x ′
n
)n has a subnet

(δsn(d)x ′
n(d)

)d∈D

such that (sn(d))d∈D → s ∈ X and

(x ′
n(d))d∈D → x ′

in (E ′, σ (E ′, E)). From equicontinuity it follows that (x ′
n(d))d∈D → x ′ uniformly on the

precompact subsets of E . Then the proof will be finished if we prove that

(δsn(d)x ′
n(d)

)d∈D → δsx ′

in (G ′, σ (G ′, G)). In other words, we have to prove that for each f ∈ C(X, E) we have that

lim
d∈D

x ′
n(d)[ f (sn(d))] = x ′[ f (s)].

But this equality follows from the following facts:

(*) limd∈D x ′[ f (sn(d))] = x ′[ f (s)].
(**) As { f (sn) : n ∈ N} is a relatively countably compact subset of E , and therefore

precompact, then

lim
d∈D

x ′
n(d)[ f (sn(d))] = lim

d∈D
x ′[ f (sn(d))].

Now assume that E is separable. Then (E ′, σ (E ′, E)) is separable by Corollary 1. If G
is a countable and dense subset in (E ′, σ (E ′, E)), then ξ := σ(E, G) is a metrizable locally
convex topology on E with ξ ≤ σ(E, E ′). The assumptions of the Fremlin theorem from [26,
3.5] are satisfied: C p(X) is angelic and Eξ is metrizable, so C p(X, Eξ ) is angelic, where
Eξ := (E, ξ). Note that C p(X, Eξ ) ≤ C p(X, Eσ ). Now angelic lemma [26, 3.1; see also
Theorem 5] applies to deduce that C p(X, Eσ ) is angelic. 
�

Applying last Proposition 15 we provide the following extension of main result of [68].

Theorem 8 Let E be a separable lcs in class G and let ξ be a topology on C(X, E) stronger
than the pointwise topology of C(X, E). The following assertions are equivalent:

(i) (C(X, E), ξ) is K -analytic.
(ii) (C(X, E), ξ) admits a compact resolution.

(iii) (C(X, E), ξ) admits a relatively countably compact resolution.

Proof Since each K -analytic space admits a compact resolution, it is enough to show that
(iii) ⇒ (i): If (C(X, E), ξ) admits a relatively countably compact resolution {Kα : α ∈

N
N}, then {Kα : α ∈ N

N} is a bounded resolution in C p(X, E) in the pointwise topology
τp . Since C p(X) is isomorphic with a subspace of C p(X, E), then C p(X) admits a bounded
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resolution. By Proposition 6 the space C p(X) is angelic. Now we apply Proposition 15 to
get that C p(X, Eσ ) is angelic. Hence the space C p(X, E) is angelic and then (C(X, E), ξ)

is also angelic (see Theorem 5). Finally note that by Lemma 3 the space (C(X, E), ξ) is
K -analytic. 
�

Lemma 3 implies that if a topological space (X, ξ) admits a weaker metric topology, then
(X, ξ) is K -analytic iff (X, ξ) has a compact resolution. It turns out that this situation implies
that (X, ξ) is even analytic, i.e. (X, ξ) is a continuous image of the space N

N. The following
applicable result was obtained by Talagrand; the proof presented below is a modification of
the proof due to Cascales and Oncina, see [10, Corollary 4.3], see also [59, Theorem 5.5.1]
and [61, Corollary 1, p.105].

Proposition 16 Let (X, τ ) be a K -analytic space and let d be a metric on X whose topology
is coarser than τ . Then (X, τ ) is analytic. Every regular analytic space X admits a weaker
metric topology.

Proof Let {Kα : α ∈ N
N} be a compact resolution on (X, τ ) and {zn : n ∈ N} be a dense

subset of (X, d). By Bd(z, r) denote the d-closed ball in (X, d) of center z and radius r > 0.
For β = (bn) ∈ N

N let

Dβ :=
⋂

n∈N

Bd(zbn , n−1).

Each set Dβ is unitary or void. For y ∈ X there exists (α, β) ∈ N
N × N

N such that
Kα ∩ Dβ = {y}.

For Kα ∩ Dβ 	= ∅, we denote by yαβ the element of X such that Kα ∩ Dβ = {
yαβ

}
. If

T :=
{
(α, β) ∈ N

N × N
N : ∅ 	= Kα ∩ Dβ = {

yαβ

}}
,

then the map f : T → X defined by f ((α, β)) = yαβ is onto.
Let (α(p), β(p))p be a sequence in T that converges to (α, β) in N

N × N
N and let

(α(p), β(p))p(m) be a subsequence.
By K -analyticity we deduce that

(
yα(p),β(p)

)
p(m)

has an adherent point y ∈ Kα . Since

β(p) converges to β = (bn)n ∈ N
N, the sequence

(
yα(p),β(p)

)
p(m)

is eventually in each

Bd(zbn , n−1), hence its adherent point y belongs to Bd(zbn , n−1).
This shows that

y ∈ Kα ∩ Dβ = {
yαβ

}
.

We proved that (α, β) ∈ T , i.e. T is a closed subset of N
N × N

N and, therefore, T is a
Polish space. Moreover we proved that yαβ is an adherent point of each subsequence of(
yα(p),β(p)

)
p . This implies trivially that yα(p),β(p) converges to yαβ , i.e., f (α(p), β(p))

converges to f (α, β). Therefore f is a continuous mapping from the Polish space T onto
(Y, τ ). This proves that (Y, τ ) is analytic.

In order to prove the second part assume that Δ = {(x, x) : x ∈ X} is the diagonal of
the analytic space X × X . Clearly Δ and (X × X)\Δ are analytic and, therefore, they are
Lindelöf.

If x 	= y there exist two closed neighbourhoods Fx and Fy of x and y, respectively, such
that

Fx × Fy ⊂ (X × X)\Δ.
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The Lindelöf property enables us to determine a sequence (xn, yn)n such that

X × X\Δ =
⋃

n

Fxn × Fyn .

Therefore Δ is a Gδ-subset of X × X since Δ = ⋂
n Gn , where

Gn = (X × X)\(Fxn × Fyn ).

For each (x, x) ∈ Δ and n ∈ N there exists an open set Ux,n in X such that

(x, x) ∈ Ux,n × Ux,n ⊂ Gn

As the space X is completely regular we may suppose that there exists a continuous function
fx,n : X → [0, 1] such that

fx,n(Ux,n) ⊂
]

1

2
, 1

]
, fx,n(X\Ux,n) ⊂

[
0,

1

2

]
.

By Lindelöf property of Δ the family
{
Ux,n : x ∈ X

}
contains a sequence (Ux(i,n),n)i such

that

Δ ⊂
⋃

i

Ux(i,n),n × Ux(i,n),n := G∗
n

From Δ = ⋂
n G∗

n it follows that if x 	= y are two different points of X , then there exists
n ∈ N such that (x, y) /∈ G∗

n . Then from (x, x) ∈ G∗
n it follows that there exists j ∈ N such

that x ∈ Ux( j,n),n . This implies that y /∈ Ux( j,n),n , since (x, y) /∈ G∗
n . By construction

fx( j,n),n(x) 	= fx( j,n),n(y).

Then X endowed with the topology that makes continuous the countable family of func-
tions { fx(i,n),n : (i, n) ∈ N

2} is metrizable with the metric defined by the formula

d(x, y) =
∑ {

2−i−n
∣∣ fx(i,n),n(x) − fx(i,n),n(y)

∣∣ : (i, n) ∈ N
2
}

Clearly d(x, y) defines a metric topology weaker then τ . 
�

3 Weakly Lindelöf Fréchet locally convex spaces

We know already that the weak dual of a quasibarrelled lcs in class G is K -analytic by
Theorem 7 and Proposition 11. In particular this yields that every reflexive Fréchet space is
weakly K -analytic. Another large class of lcs for which the weak topology is Lindelöf is the
class of (WCG) Fréchet locally convex spaces.

In [42] Khurana proved that every (WCG) Fréchet space is weakly K -analytic. For the
case when E is a (WCG) Banach space we refer to [65], see also [17,53].

Recall that a Banach space E is weakly compactly generated (WCG) if there exists a
weakly compact subset in E whose linear span is a dense subspace of E . A lcs E is said to
be (WCG) if there exists an increasing sequence of σ(E, E ′)-compact subsets of E whose
union is dense in E .

In [53] Orihuela used the method of constructing projections in (WCG) Banach spaces
developed by Valdivia from [72–76] and by Orihuela and Valdivia in [55], to provide a direct
proof showing that the weak topology of a (WCG) Banach space is Lindelöf. This method
applies to prove [53] that a dual Banach space is weakly Lindelöf if, and only if, its ∗-weak
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dual unit ball is a Corson compact space. Hence if E is a dual Banach space which is weakly
Lindelöf, then the product E × E is weakly Lindelöf, too.

We refer the reader to [1,9,54] (and references) concerning weakly countably determined
(WCD) and weakly Lindelöf determined (WLD) Banach spaces which provided larger clas-
ses (of weakly Lindelöf spaces) than the class of (WCG) Banach spaces.

We recall the following theorem due to Khurana [42].

Theorem 9 Let E be a Fréchet space which admits an increasing sequence of σ(E, E ′)-
compact sets whose union is dense in E. Then σ(E, E ′) is K -analytic. Moreover E is a Borel
subset of (E ′′, σ (E ′′, E ′)), where E ′′ is the bidual of E.

Proof Since every metrizable lcs E is angelic in the weak topology σ(E, E ′), then to prove
that (E, σ (E, E ′)) is a K -analytic space it is enough to show that (E, σ (E, E ′)) has a com-
pact resolution by Lemma 3.

In a natural way, we identify (E, σ (E, E ′)) with a subspace of R
E ′

, endowed with the
product topology. Therefore for each x in E we have x = (g(x))g∈E ′ . For each f ∈ E ′ the
mapping

Pf : R
E ′ −→ R

defined by

Pf ((αg)g∈E ′) := α f

verifies in any point x = (g(x))g∈E ′ ∈ E

Pf (x) = Pf ((g(x))g∈E ′) = f (x)

and therefore, the restriction of Pf to E is f .
Let (Vn)n be a base of closed absolutely convex neighbourhoods of 0 in E , such that

(n + 1)Vn+1 ⊂ Vn

for each n ∈ N. Let V n be the closure of Vn in R
E ′

. Then, given n and p in N, f ∈ V 0
n and

zn+p ∈ V n+p , we have that
∣∣Pf (zn+p)

∣∣ ≤ sup
{∣∣Pf (x)

∣∣ : x ∈ V n+p
} = sup

{∣∣Pf (x)
∣∣ : x ∈ Vn+p

}

From this it follows that for each f ∈ V 0
n and zn+p ∈ V n+p we have

∣∣Pf (zn+p)
∣∣ ≤ sup

{
| f (x)| : x ∈ Vn

n + p

}
≤ 1

n + p
(1)

Let (An)n be an increasing sequence of weakly compact absolutely convex subsets of E
such that

⋃
n An = H is dense in E . Since H is dense in E and Vn is a neighbourhood of

zero in E we have that

E ⊂ H + Vn ⊂ H + V n

for each n ∈ N. If

x ∈
⋂{

H + V n : n ∈ N
}

then there exists a sequence

(x = hn + zn)n (2)
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with hn ∈ H and zn ∈ V n . Fix an n ∈ N. Then for each f ∈ V 0
n and each p and q in N we

have by Pf definition and (2) that
∣∣ f (hn+p − hn+q)

∣∣ = ∣∣Pf (x − zn+p) − Pf (x − zn+q)
∣∣ = ∣∣Pf (zn+q) − Pf (zn+p)

∣∣

and therefore from (1) we deduce that

∣∣ f (hn+p − hn+q)
∣∣ ≤ ∣∣Pf (zn+p)

∣∣ + ∣∣Pf (zn+q)
∣∣ ≤ 2

n
.

for each f ∈ V 0
n . The uniformity implies that the sequence (hs)s is Cauchy in the Fréchet

space E and therefore it has a limit h ∈ E . Then lims→∞ hs = h and from (1) it follows that

Pf (x) = lim
s→∞ Pf (hs + zs) = lim

s→∞
{

f (hs) + Pf (zs)
} = f (h) = Pf (h)

implying x = h in R
E ′

. Since x = h ∈ E , then

E =
⋂ {

H + V n : n ∈ N
}

and then we note that

E =
⋂ {⋃ [

Am + Vn : m ∈ N
] : n ∈ N

}
.

Therefore, E admits a resolution
{

Kα : α ∈ N
N
}

with

Kα =
⋂{

Amn + V n : n ∈ N
}

for each α = (mn) ∈ N
N.

In R
E ′

the sets Amn + V n for n ∈ N, are closed.
Claim. The closed set Kα is bounded in R

E ′
.

Indeed, if f ∈ E ′, then there exists n in N such that f ∈ V 0
n and we have

sup {| f (x)| : x ∈ Kα} ≤ sup
{∣∣Pf (x)

∣∣ : x ∈ Amn + V n
}

≤ sup
{| f (x)| : x ∈ Amn

} + sup
{∣∣Pf (x)

∣∣ : x ∈ V n
}

= sup
{| f (x)| : x ∈ Amn

} + sup
{∣∣Pf (x)

∣∣ : x ∈ Vn
}

≤ kmn + 1,

where

kmn := sup
{| f (x)| : x ∈ Amn

}
.

This proves that the closed set Kα is compact in R
E ′

and it is also compact in (E, σ (E, E ′)).
We proved that {Kα : α ∈ N} is a compact resolution in (E, σ (E, E ′)).

Finally, since Amn + V n is closed in R
E ′

, then
(

Amn + V n
) ⋂

E ′′

is closed in (E ′′, σ (E ′′, E ′)) and so
(
H + V n

) ∩ E ′′

is a Borel set in (E ′′, σ (E ′′, E ′). Since

E =
⋂ {(

H + V n
) ∩ E ′′ : n ∈ N

}

we deduce that E is a Borel set in (E ′′, σ (E ′′, E ′)). 
�
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It is known [71] that (*) every lcs which is a Baire space and additionally K -analytic must
be a Fréchet space, i.e. a metrizable and complete lcs. This combined with Theorem 9 yields
the following

Proposition 17 Let E be a (WCG) Baire lcs. Then E is a Fréchet space if, and only if,
(E, σ (E, E ′)) is K -analytic.

Proof Assume that E is a Fréchet space. By Theorem 9 the space E is weakly K -analytic.
Conversely, if (E, σ (E, E ′)) is K -analytic, then (E, σ (E, E ′)) admits a compact resolution.
By (*) the space E is metrizable. Since E has a σ(E, E ′)-compact resolution and the original
topology of E has a basis of neighbourhoods consisting of σ(E, E ′)-closed sets, then the
space E admits a complete resolution as well. But every metrizable Baire lcs which has a
complete resolution is complete, see [34, Theorem] and its refined version in [15, Theorem 3.5
and Corollary 3.6]. 
�

Proposition 17 applies also to get the well-known fact stating that a separable space
X := R

A with uncountable A is not K -analytic (since X is (WCG) and Baire but not metr-
izable).

If E is a Banach space, then the Mackey dual (E ′, μ(E ′, E)) is not metrizable, except
the case when E is reflexive. It is well-known that (E ′, μ(E ′, E)) is a complete lcs. If B ′ is
the dual unit ball in the dual E ′ of E , then one may expect that some cases (different from
reflexivity in general case) may provide metrizability of (B ′, μ(E ′, E)|B ′).

In [62] Schlüchtermann and Wheeller introduced strongly weakly compactly generated
((SWCG) shortly) Banach spaces. A Banach space is (SWCG) if the space (B ′, μ(E ′, E)|B ′)
is metrizable, see also [63].

The following Theorem 10 (from [62, Theorem 2.1]) characterizes (SWCG) Banach spaces
in term of some density condition. Theorem 10 shows also that every (SWCG) Banach space
is (WCG).

In [62, Theorem 2.5] it is proved that every (SWCG) Banach space is weakly sequentially
complete. Hence the space c0 although is a (WCG) space is not (SWCG).

Theorem 10 The following conditions are equivalent for a Banach space E with a closed
unit balls B ⊂ E and B ′ ⊂ E ′.

(i) (B ′, μ(E ′, E)|B ′) is metrizable.
(ii) There exists a sequence (Kn)n of weakly compact absolutely convex subsets of E such

that for every weakly compact set L ⊂ E and every ε > 0 there exists n ∈ N such that
L ⊂ Kn + εB.

(iii) There exists a weakly compact absolutely convex set K ⊂ E such that for each weakly
compact set L ⊂ E and every ε > 0 there is n ∈ N such that L ⊂ nK + εB.

Assume now that the space E is a separable (SWCG) Banach space. Then clearly the
space (E ′, μ(E ′, E)) is separable. Since (E ′, μ(E ′, E)) is separable, then B ′ is separable as
well.

Indeed, let F(E ′) be the set of all absolutely convex neighbourhoods of zero in μ(E ′, E)

and let Um ∈ F(E ′), m ∈ N, such that (B ′ ∩ [Um + Um])m is a basis of neighbourhoods of
zero in B ′. By separability there exists a countable set Bm such that

E ′ ⊂ Bm + Um,

and then there exists in B ′ a countable subset Cm such that

B ′ ⊂ Cm + Um + Um .



On realcompact topological vector spaces 61

Since E ′ = ⋃
n nB ′ and each nB ′ is metrizable separable and complete, then the space

(E ′, μ(E ′, E)) is analytic. Therefore we have

Proposition 18 Let E be a (SWCG) Banach space. Then (E ′, μ(E ′, E)) is analytic if, and
only if, E is separable.

Let (S,Σ,μ) is a finite measure space. L1(μ, E) denotes a Banach space of Bochner
integrable functions on S into a Banach space E . In [62, Theorem 3.2] Schlüchtermann and
Wheller presented partial results of whether X (SWCG) implies that L1(μ, E) is Talagrand
[67], see also Diestel [13], proved that L1(μ, E) is (WCG) if E is a (WCG) Banach space.

If E is a separable Banach space, then the Mackey dual (E ′, μ(E ′, E)) is a separable but
the strong dual (E ′, β(E ′, E)) need not be separable. Clearly (E ′, β(E ′, E)) is analytic if,
and only if, (E ′, β(E ′, E)) is separable. Theorem 10 and Proposition 18 may suggest the
following question:

Let E be a separable Banach space. Is it true that the Mackey dual (E ′, μ(E ′, E)) of E is
an analytic space?

For the Mackey dual of C p(X) we proved in [36] the following general fact suggested
by [18], where Ferrando proved that the Mackey dual of C p[0, 1] is not analytic but weakly
analytic.

Theorem 11 The Mackey dual of C p(X) is analytic if, and only if, X is countable.

Proof Set X := (X, τ ) and assume that the Mackey dual of C p(X) is analytic. Suppose, by
contradiction, that X is uncountable. For x ∈ X the functional

δx : C p(X) −→ R

defined by δx ( f ) = f (x) is linear and continuous. Denote by L p(X) and Lμ(X) the dual of
C p(X) with the weak dual topology σ = σ(C p(X)′, C p(X)) and with the Mackey topology
μ = μ(C p(X)′, C p(X)), respectively. Set Y = {δx : x ∈ X}. The map

δ : (X, τ ) −→ (Y, σ |Y )

defined by x → δx is a homeomorphism and the set Y is closed in L p(X), see [2, Proposition
0.5.9]. Hence Y is also closed in Lμ(X). Thus (Y, μ|Y ) is analytic. Let γ be the topology
on X such that δ is a homeomorphism between (X, γ ) and (Y, μ|Y ). Since (X, γ ) is an
uncountable analytic space, it contains a set A homeomorphic to the Cantor set, see [59].
Clearly

γ |A = τ |A.

Let (xn)n ⊂ A be a sequence such that xn 	= xm for n 	= m that converges to some

x0 ∈ (A\{xn : n ∈ N}).
It is easy to see that for every closed subspace G of (X, τ ) and every x ∈ (X\G) there exists
f ∈ C(X, I ) with f (x) = 1 such that G ∩ supp f = ∅. Put

Xn = {xk : k > n} ∪ {x0}
for n ∈ N. Clearly Xn is closed in X and xn 	∈ Xn for n ∈ N. Therefore we can construct
inductively a sequence ( fn)n ⊂ C(X, I ), such that fn(xn) = 1 and

supp fn ∩
(

Xn ∪
⋃

{supp fk : 1 ≤ k < n}
)

= ∅.
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Then x0 	∈ ⋃{supp fk : k ∈ N}) and

supp fn ∩ supp fm = ∅
for all n, m ∈ N with n 	= m.

Denote by C∗(X) the Banach space of all bounded real-valued continuous functions on
X with the sup norm ‖ · ‖. Let g ∈ C∗(X)′. For k ∈ N we put

αk = |g( fk)|/g( fk)

if g( fk) 	= 0, and αk = 1, otherwise. Then |αk | = 1 and

αk g( fk) = |g( fk)|
for k ∈ N.

Let n ∈ N and Sn = ∑n
k=1 αk fk . Then Sn ∈ C∗(X) and ‖Sn‖ = 1. Thus

n∑

k=1

|g( fk)| =
∣∣∣∣∣

n∑

k=1

αk g( fk)

∣∣∣∣∣ = |g(Sn)| ≤ ‖g‖

for n ∈ N, so
∞∑

k=1

|g( fk)| ≤ ‖g‖.

Hence g( fk) → 0. It follows that the sequence ( fn)n converges weakly to 0 in C∗(X). Thus
the set

F0 = {0, f1, − f1, f2, − f2, . . .}
is weakly compact in C∗(X). By the Krein–Smulian Weak Compactness Theorem [47,
Theorem 2.8.14] the closed convex hull F of F0 in C∗(X) is weakly compact. Clearly
F is the closed absolutely convex hull of the set { fk : k ∈ N} in C∗(X). The topology � of
the pointwise convergence in C∗(X) is weaker than the weak topology of C∗(X), so F is
compact in (C∗(X), �). Hence F is compact in C p(X), since the injection map

(C∗(X), �) −→ C p(X)

is continuous. Thus the functional

pF : Lμ(X) −→ [0,∞),

defined by

pF (g) = sup{|g( f )| : f ∈ F},
is a continuous seminorm. Since ( fn)n ⊂ F we have

pF (δxn ) ≥ | fn(xn)| = 1

for n ∈ N. It is easy to see that f (x0) = 0 for all f ∈ F , so pF (δx0) = 0. It follows that
δxn 	→ δx0 in (Y, μ|Y ), so xn 	→ x0 in (X, γ ); a contradiction.

Assume now that the space X is countable. If C p(X) is finite-dimensional, then the Mackey
dual Lμ(X) of C p(X) is finite-dimensional; so it is analytic. If C p(X) is infinite-dimensional,
then C p(X) is a metrizable lcs isomorphic to a dense subspace of R

N, so Lμ(X) is algebrai-
cally isomorphic to ϕ, the strong dual of R

N. But ϕ with the strongest locally convex topology
is the sum of an increasing sequence of finite-dimensional Banach spaces, so it is an analytic
space. It follows that Lμ(X) is analytic, too. 
�
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Theorem 11 and its proof yields also the following

Corollary 2 The strong dual of C p(X) is analytic if, and only if, X is countable.

Recall that L p(X) is analytic if, and only if, X is analytic by [2, Proposition 0.4.13]. Thus
Theorem 11 provides many of concrete non analytic lcs whose weak topology is analytic.

Corollary 3 Let X be an uncountable analytic space. Then the Mackey dual Lμ(X) of
C p(X) is weakly analytic but not analytic.

The Mackey dual (E ′, μ(E ′, E)) of a Banach space has been studied also in [43,63].
In [63] the authors proved among the others that if E is a separable (SWCG) Banach space,
then (E, σ (E, E ′)) (which is clearly analytic) is an ℵ0-space, i.e., it has a countable pseudo-
base.

A collection P of subsets of a topological space E is called a pseudobase if for any open
set U ⊂ E and compact K ⊂ U there exists P ∈ P with K ⊂ P ⊂ U . Recall also that every
ℵ0-space is separable and Lindelöf and every closed set is a Gδ-set, [48], [63, Theorem 4.1].
In [43] Kirk studied the Mackey dual for spaces C(K ) with compact K .

On the other hand, by Batt and Hiermeyer [3, 2.6] (see also [62], [63, p. 274] and [63,
Theorem 4.2]) there exists a separable Banach space E for which (E, σ (E, E ′)) is not an
ℵ0-space. It is known also [48], [63, Theorem 4.1], that a regular topological space is both an
ℵ0-space and a k-space if, and only if, it is a quotient of a separable metric space. Therefore
it seems to be natural to ask when for a Banach space E the space (E, σ (E, E ′)) is a k-space.

Recall that a Hausdorff space X is a k-space if a set A ⊂ X is closed in X if, and only if,
A ∩ K is closed in K for each compact set K ⊂ X . We shall need the following fact due to
Grothendieck [29, p. 134].

Lemma 5 Let A ⊂ E ′ be μ(E ′, E)-compact for a Banach space E. Then every σ(E, E ′)-
convergent sequence in E converges uniformly on A.

Next Proposition proves that for every infinite-dimensional Banach space E the space
(E, σ (E, E ′)) is never a k-space.

Proposition 19 If E is a Banach space for which (E, σ (E, E ′)) is a k-space, then E is
finite-dimensional.

Proof Let γ be the topology on E of uniform convergence on μ(E ′, E)-compact sets. Then
clearly σ(E, E ′) ≤ γ . Since σ(E, E ′) and γ have the same sequentially compact sets by
Lemma 5, then the both topologies have the same compact sets (recall that σ(E ′, E) and γ

are angelic).
Assume that (E, σ (E, E ′)) is a k-space, then we have σ(E, E ′) = γ . Let (xn)n be a

null-sequence in the norm topology of E ′. Since {0} ∪ {xn : n ∈ N} is μ(E ′, E)-compact,
then the sequence (xn)n has finite-dimensional linear span. This yields that E ′ (hence also
E) is finite-dimensional. 
�

4 Fréchet–Urysohn spaces in class G

In this section we prove that every Fréchet–Urysohn as well as every Baire lcs in class G is
metrizable, see [8]. Recall that a topological space X is Fréchet–Urysohn if for each A ⊂ X
and each x ∈ A there exists a sequence in A which converges to x .
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We shall need the following Makarov-type theorem formulated for spaces E in class G.
A sequence of absolutely convex closed subsets (An)n in a lcs E is called bornivorous if for
every bounded set B in E there exists An which absorbs B.

Lemma 6 Let E be a lcs in class G and let {Aα : α ∈ N
N} be a G-representation of E. For

α = (nk) ∈ N
N set

Cn1...nk =
⋃

{Aβ : β = (mk) ∈ N
N, n j = m j , j = 1, 2, . . . k},

for k ∈ N. Then the polars

C◦
n1

⊂ C◦
n1,n2

⊂ · · · ⊂ C◦
n1,n2,...,nk

⊂ · · ·
compose a bornivorous sequence in E.

Proof Assume by contradiction that there exists a bounded set B in E such that B 	⊂ kC◦
n1...nk

for every k ∈ N. Then for every k ∈ N there exists xk ∈ B such that

k−1xk 	∈ C◦
n1...nk

.

Therefore for every k ∈ N there exists fk ∈ Cn1...nk such that

| fk(k
−1xk)| > 1.

Then for every k ∈ N there exists

βk = (mk
n)n ∈ N

N

such that fk ∈ Aβk , where n j = mk
j for j = 1, 2, …k. Next define

an = max{mk
n : k ∈ N},

n ∈ N, and γ = (an) ∈ N
N. Since γ ≥ βk for k ∈ N, then property (b) yields Aβk ⊂ Aγ ,

so fk ∈ Aγ for all k ∈ N. Finally, since by definition any sequence in Aγ is equicontinuous,
one gets that the sequence ( fk) is equicontinuous. Hence the sequence ( fk)k is uniformly
bounded on bounded sets in E , including B, a contradiction. 
�

We need also the following fact from [8].

Lemma 7 For a quasibarrelled space E the following statements are equivalent:

(i) E is in G;
(ii) There is a family F := {Dn1,n2,...,nk : k, n1, n2, . . . , nk ∈ N} of absolutely convex

closed subsets satisfying

(a) Dm1,m2,...,mk ⊂ Dn1,n2,...,nk , whenever ni ≤ mi , i = 1, 2, . . . , k;
(b) For every α = (nk) ∈ N

N we have Dn1 ⊂ Dn1,n2 ⊂ · · · ⊂ Dn1,n2,...,nk ⊂ · · ·
and the sequence is bornivorous.

(c) If Uα :=
⋃

k
Dn1,n2,...,nk , α ∈ N

N, then {Uα : α ∈ N
N} is a basis of neighbor-

hoods of the origin in E.

(iii) E has a G-basis, i.e. a basis of neighborhoods of the origin {Uα : α ∈ N
N} satisfying

the decreasing condition Uβ ⊂ Uα whenever α ≤ β in N
N.

(iv) The strong dual (E ′, β(E ′, E)) is a quasi-(LB)-space.
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Proof (i) ⇒ (ii): Fix a G-representation {Aα : α ∈ N
N} of E . Since the space E is quasi-

barrelled, then each set Aα is equicontinuous. Hence each set Bα := A◦◦
α is weakly com-

pact and β(E ′, E)-bounded. This shows that each Bα is a β(E ′, E)-Banach disc. Therefore
{Bα : α ∈ N

N} is a resolution consisting of Banach discs in (E ′, β(E ′, E)). This shows that
the strong dual (E ′, β(E ′, E)) is a quasi-(L B)-space in sense of Valdivia, see [77].

By [77, Proposition 22] there is a resolution {Aα : α ∈ N
N} in (E ′, β(E ′, E)) consisting

of Banach discs with the following property: For every β(E ′, E)-Banach disc B ⊂ E ′ there
is α ∈ N

N with B ⊂ Aα .
Since each set Aα is equicontinuous and E is a quasibarrelled space, then the G-repre-

sentation {Aα : α ∈ N
N} is a fundamental family of equicontinuous subsets of E ′. Hence the

family of polars {A◦
α : α ∈ N

N} is a basis of neighborhoods of the origin in E .
For k, n1, n2, …, nk ∈ N, we define Cn1,n2,...,nk as usual and set

Dn1,n2,...,nk := C◦
n1,n2,...,nk

.

For each α = (nk) ∈ N
N we have

Vα :=
∞⋃

k=1

Dn1,n2,...,nk

σ(E,E ′)

⊂
( ∞⋂

k=1

Cn1,n2,...,nk

)◦
⊂ A◦

α.

Since Vα is a closed, absolutely convex and bornivorous set, then Vα is a neighborhood
of zero. By [56, Proposition 8.2.27] one gets for every ε > 0

Vα =
∞⋃

k=1

Dn1,n2,...,nk

σ(E,E ′)

⊂ (1 + ε)

∞⋃

k=1

Dn1,n2,...,nk = (1 + ε)Uα.

Thus {Uα : α ∈ N
N} is a basis of T-neighborhoods of the origin in E ; let us observe that

this prove that (ii) ⇒ (iii).
(iii) ⇒ (i): The family of polars {U ◦

α : α ∈ N
N} is a G-representation of the space E .

(iii) ⇒ (iv): If {Uα : α ∈ N
N} is a G-basis in E , then sets U ◦

α provide a quasi-(L B)-space
representation for (E ′, β(E ′, E)).

(iv) ⇒ (i): Let {Aα : α ∈ N
N} be a quasi-(L B) representation for (E ′, β(E ′, E)). Since

E is quasibarrelled, then each set Aα is equicontinuous. Hence E is in class G. 
�

Now we are ready to prove Theorem 12, which is due to Cascales, Ka̧kol and Saxon [8]
and generalizes parts of [37, Theorem 2.1] and [50, Theorem 3].

Recall the following concept due to W. Ruess. A lcs E is called b-Baire-like if for every
increasing bornivorous sequence (An)n of absolutely convex closed subsets of E covering
E there exists n ∈ N such that An is a neighbourhood of zero in E .

Clearly every locally convex Baire space is Baire-like and every Baire-like space is
b-Baire-like.

Theorem 12 For a lcs E in G the following statement are equivalent:

(i) E is metrizable.
(ii) E is Fréchet-Uryshon.

(iii) E is b-Baire-like.
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Proof (i) ⇒ (ii): is obvious.
(ii) ⇒ (iii): Every Fréchet–Urysohn lcs is b-Baire-like [37].
(iii) ⇒ (i): If E is b-Baire-like, then E is a quasibarrelled space and therefore we can

produce a countable family

F := {Dn1,n2,...,nk : k, n1, n2, . . . , nk ∈ N}
as in the proof of Lemma 7.

Since the sequence

Dn1 ⊂ Dn1,n2 ⊂ · · · ⊂ Dn1,n2,...,nk ⊂ · · ·
is bornivorous, then for every α = (nk) ∈ N

N we have

E =
∞⋃

k=1

k Dn1,n2,...,nk

and, again, since E is b-Baire-like some Dn1,n2,...,nm is a neighborhood of the origin for
certain m ∈ N. Thus the family

U := {Dn1,n2,...,nk ∈ F : Dn1,n2,...,nk is neighborhood of 0}
is a countable basis of neighborhoods of the origin for E . 
�

This applies to get the following

Corollary 4 Let {Et : t ∈ T } be a family of lcs. If T is uncountable, then the product
∏

t Et

is not in class G.

Proof Assume that
∏

t∈T Et is in class G and T is an uncountable set. Then
∏

t∈T Et

contains a subspace of the form R
A for some uncountable set A. Clearly R

A is a Baire
space in class G. By Theorem 12 one gets that R

A is metrizable which clearly provides a
contradiction. 
�

Lemma 7 provides a large class of lcs in class G with a special basis of neighbourhood
of zero. Recall that from Fremlin’s [59, Theorem 5.5.3] it follows that under Continuum
Hypothesis there exists a non-analytic K -analytic space E such that each compact set in E
is metrizable. On the other hand, we note the following

Example 2 Let E be a nonseparable (WCG) Banach space, for example E := c0(Γ ) for
uncountable Γ . Then (E ′, σ (E ′, E)) is K -analytic non-analytic with a resolution consisting
of nonmetrizable absolutely convex compact sets although every separable compact set in
(E ′, σ (E ′, E)) is metrizable.

Indeed, by Theorem 7 the space (E ′, σ (E ′, E)) is K -analytic, and since E is nonsepara-
ble, then (E ′, σ (E ′, E)) is nonseparable. Since (E, σ (E ′, E)) is web-compact, then by [12]
every compact separable set in

(E ′, σ (E ′, E)) ⊂ C p(E, σ (E ′, E))

is metrizable. By Lemma 7 the space E admits a G-basis

{Uα : α ∈ N
N}.

Then polar sets U ◦
α compose in (E ′, σ (E ′, E)) a resolution consisting of compact absolutely

convex sets. Since E is not transeparable, then Proposition 2 applies to get that there exists
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α0 ∈ N
N such that U ◦

α is not metrizable. Set U := {U ◦
α : α ≥ α0}. Clearly every Uα ∈ U is

nonmetrizable and U covers E ′. In fact, if f ∈ E ′, then there exists a neighbourhood of zero
U in E such that f ∈ U ◦. Then there exist β ∈ N

N and γ ≥ α0 in N
N such that

Uγ ⊂ Uα0 ∩ Uβ ⊂ U.

Hence U is a resolution as required.

5 Some open problems

Problem 1 Characterize the strongly realcompacness of X in term of C(X).

Problem 2 When Cc(X) is a Baire space, X being a strongly realcompact space?

Problem 3 Characterize for a Fréchet space E the countable tightness of the locally convex
space (E ′, β(E ′, E)) in terms of E .

Problem 4 Assume that for a lcs in class G the tightness of (E, σ (E, E ′)) is m. What
topological property in (E ′, σ (E ′, E)) describes this condition?

Problem 5 Describe those lcs E for which there exists a (usco) map from N
N with compact

absolutely convex values covering E .

Problem 6 Does there exist a (DF)-space not analytic but weakly analytic.

Problem 7 Let E be an analytic (DF)-space. Is every bounded set in E a metrizable set?

Problem 8 Is there some corresponding result related with Corollary 3 for spaces Cc(X)?

Problem 9 Describe possible analogue to Proposition 19 for kR-property (recall X is a kr -
space if it is continuous each real function f whose restrictions to each compact subset of X
are continuous).

Problem 10 Does 9 admit some generalization for lcs in class G?
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78. Walker, R.C.: The Stone-Čech compactification Ergebnisse der Mathematik und ihrer Grenzgebiete.

Band 83. Springer, Berlin (1974)

http://dx.doi.org/10.1016/j.topol.2003.12.005
http://dx.doi.org/10.1112/jlms/s2-35.1.149
http://dx.doi.org/10.1112/jlms/s2-35.1.149

	On realcompact topological vector spaces
	Abstract
	1 Introduction
	2 Locally convex spaces in class mathfrakG
	3 Weakly Lindelöf Fréchet locally convex spaces
	4 Fréchet--Urysohn spaces in class mathfrakG
	5 Some open problems
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


