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Density conditions in Fréchet and
(DF)-spaces

KLAUS D. BIERSTEDT and JOSE BONET

ABSTRACT. We survey our main results on the density condition for Fréchet spaces and on the
dual density conditions for {DF)-spaces (cf. [2] and [3], I.) as well as some recent developments.

At the end of section 1., we include a new result on the projective tensor product of two Fré-
chet spaces. Taskinen's construction of counterexamples to Grothendieck’s “probléme des topo-
logies™ vields Fréchet spaces E, F with the density condition such that £ ®_F is not (¢ven) dis-
tinguished (see [14]). We prove now that the negative solution of the “probléme des topologies”
is, in fact, the only obstruction: For two Fréchet spaces E and F with the density condition,
E ®_F has the density condition as well (and hence is distinguished) whenever the “probléme des
topologies” has a positive solution for the pair (£, F).

Distinguished locally convex (Lc.) spaces, that is, locally convex spaces E
such that the strong dual E’, is barrelled, were introduced by J. Dieudonné
and L. Schwartz. Later on, A. Grothendieck showed that a metrizable Lc. space
E is distinguished if and only if E’, is bornological.

Let (U,),.n denote a basis of O-neighborhoods for a metrizable L.c. space £
and define the “inductive dual” E’ of E by E':= ind E,. Then E’

carries a stronger topology than E°, and, in fact, £’ is the bornological space
associated with E’,. Hence E is distinguished if and only if £, = E’.

Thus, the class of the distinguished Fréchet spaces is related to the naive
idea that the strong dual of a Fréchet space E, i.e., the strong dual of a space
which can be represented as a countable (reduced) projective limit of Banach
spaces, should also be representable as a countable inductive limit of Banach
spaces (and that the duality should work by simply dualizing the projective
spectrum). As the existence of non-distinguished Fréchet spaces demonstrates
(the first example of such a space was due to Kathe and Grothendieck and
was, in fact, a certain Kéthe echelon space A,), the naive idea does not work

1980 Mathematics Subject Classification {1985 revision): 46A06, 46A07, 46A09,
46A20, 46A32, 46A45, 46M05, 46M40
Editorial de la Universidad Complutense. Madnd, 1989.



60 K. D, Bierstedr-J. Bonet

out in general. From this point of view, the notion of distinguishedness for Fré-
chet spaces prevents a certain “pathology”, and indeed the class of the
distinguished Fréchet spaces is the largest one among all classical subclasses
arising in the classification of Fréchet spaces. (But note that by a very recent
result of J. Taskinen [14], the Fréchet space C(R)~L,(R), endowed with the
natural intersection topology arising from the compact-open topology on C{(R)
and the norm topology of L,(R), is not distinguished. Since C(R)~L(R) is a
natural space of analysis, it is quite doubtful from this point of view whether
non-distinguishedness of a Fréchet space should really be considered as a
“pathology™.)

The so-called “density condition” arose from the study of S. Heinrich [10]
on ultrapowers of l.c. spaces. Our work in {2] on this condition started with
the simple observation that for metrizable l.c. spaces, the density condition is
closely related to the notion of distinguishedness. “At the end of the day”, it
turned out that a metrizable l.c. space E satisfies the density condition if and
only if the space /(E) of all absolutely summable sequences in E is distinguished
and that this holds if and only if all bounded subsets in the strong dual £, are
metrizable.

As a consequence of this remarkable equivalence, we were able to charac-
terize the echelon spaces A, =A(I, 4) (of arbitrary order p, | <p<ooorp =0)
with the density condition in terms of the Kéthe matrices A. In the case p=1,
where the density condition is equivalent to distinguishedness, this led to a
characterization of the distinguished Kéthe echelon spaces A,. It was also pos-
sible to classify the distinguished Kothe echelon spaces A(E)=A(/AE) =A®E
with values in a Fréchet space E completely (which involves an interesting
dichotomy).

The present survey article is based on an invited lecture (by the first-
named author) during the Functional Analysis Conference at El Escorial, June
14, 1988. In Section 1., we report on the main results of [2] and on some re-
cent developments in this connection, mainly due to D. Vogt [16] and J. Tas-
kinen [14]; at the end of this section, we also include a new result on the in-
heritance of the density condition under projective tensor products. Section 2.
is devoted to a similar report on the first part of {3].

The starting point of our work in [3] was the observation that for metri-
zable l.c. spaces E, the “proper” definitions of the notions of distinguished-
ness and of the density condition involve the strong dual E’, of E rather than
E itself and that several of the proofs in [2] proceeded by use of duality theory.
Following the path paved by A. Grothendieck’s introduction of the class of
(DF)-spaces, we therefore defined and studied “dual density conditions” mainly
in the framework of (DF)-spaces. (It turned out that (DF)-spaces, and not the
larger class of (gDF)-spaces, are indeed the proper context for studies of this

type.)
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For a strong dual of a metrizable L.c. space, quasibarrelled and bornologi-
cal are equivalent notions, but these properties split up in the class of (DF)-
spaces. Correspondingly, we have a dual density condition {DDC) and a strong
dual density condition (SDDC) for (DF)-spaces. A (DF)-space satisfies (DDC)
if and only if the bounded subsets of E are metrizable, and it also satisfies
(DDC) (resp., (SDDC)) if and only if the space !_(E) of all bounded sequences
with values in E is quasibarrelled (resp., bornological).

For a locally complete (DF)-space E and a Kothe echelon space A, {DDC)
allows to characterize the (quasi-) barrelled spaces L.(A,,E) of continuous lin-
ear mappings from A, to E, and to give “good” necessary and “good” suffi-
cient conditions for L,(A,E) to be bornological. The e-tensor product (1,), ® E
and its completion (),)’, ®, E are natural topological subspaces of L(LE)if
E is a complete Lc. space. But, interestingly enough, the dual density condi-
tions do not occur in the classification of the quasibarrelled and bornological
(DF)-spaces of type (A,),®.E and (A,), ®, E, they come in only when one
passes to the “full” space L,(A,E).

In this survey, we have concentrated on a presentation of the results of [2]
and (of the first part) of [3]. Among other things, one method of [3] involves
“reverse projective description”, and we state the main result in this direction
(as Theorem 2.7). Ideas of this type are closely connected with “weighted in-
ductive limits” of spaces of continuous functions which, from the side of inter-
esting applications, also were one of our main motivations for the study of
the dual density conditions for (DF)-spaces. However, sketches of proofs, or
of the methods, and the applications to weighted inductive limits (see the last
part of [3]) are beyond the scope of this article.

1. HEINRICH’S DENSITY CONDITION FOR FRECHET SPACES

Ultraproducts have been used for some time in Banach space theory as a
framework for some aspects of the so-called “local theory” of Banach spaces.
In his article [10] (which raised a number of open questions and also intro-
duced an interesting notion of superreflexivity for locally convex spaces), S.
Heinrich then proceeded to study the corresponding construction in the con-
text of general locally convex (l.c.) topological vector spaces, with applications
to the nonlinear (i.e., uniform and Lipschitz) classification of such spaces.

Heinrich investigated two different kinds of ultrapowers of a l.c. space E
with respect to an ultrafilter D on a set I: the fill ultrapower (E), and the
bounded ultrapower [E],, a natural subspace of (E),. Both definitions are ca-
nonical extensions of the Banach space concept: {E), is the maximal space to
which the continuous seminorms of E can be extended (and arises from the
nonstandard hull in nonstandard analysis), while the (new) construction of
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[E], is rather based on the fact that for a Banach space X, the ultrapower (X),,
is generated by all D-bounded subsets of X/D. (See [10] for details.)

Both kinds of ultrapowers have certain advantages, and thus one is inter-
ested in the so-called “density condition” for a L.c. space E, a necessary and suf-
ficent condition for the density of the bounded ultrapower [E], in the full
ultrapower (E), for an arbitrary “ «(E)*-good countably incomplete™ ultrafilter
D. (The condition also occurs independently in Heinrich’s investigations on
the duality of ultrapowers.) Heinrich notes that “the density condition is of ob-
vious importance in the study and application of ultrapowers” and char-
acterizes this condition in terms of “standard” l.c. theory as follows ([10],
Theorem 1.4).

1. Definition (S. Heinrich). Let E denote a (Hausdorf{') i.c. space, %(E) the
system of all closed absolutely convex neighborhoods of 0 in E (or any basis of
0-neighborhoods in E) and B(E) the system of all closed absolutely convex and
bounded subsets of E (or any basis of bounded sets in E).

Then E satisfies the density condition if, given any function
A %(E) - RAO} and an arbitrary V € %(E), there always exist a finite subset
U of %(E)} and B € B(E)} such that

(1) N MIWUCB+V.

UstU

By taking polars in the inclusion (1), it is easily seen that the l.c. space £
satisfies the density condition if and only if for each A: Z(E}~>R.\ {0} and each
Ve%(E), one can find Uc#(E) finite and B € B(E) with

(2) I( ;iux(U)U“)J( Y MU= BV,

where I'(resp., l:) denotes the absolutely convex hull (resp., the closed abso-
lutely convex hull). The left hand side of (2) is contained in
F(UL%(QA(U)U’), a O-neighborhood for the inductive limit topology of

E. = ,,,iéldu_.E "~ And since the topology of E’, is a priori stronger than the

strong topology (of E’,)), one concludes from (2) that the topologies of E; and
of E’, coincide on each equicontinuous subset in the dual E” of a 1.c. space E
with the density condition.

Heinrich already noted that each quasinormable space (and thus a fortiori
each (gDF)-space) as well as each Fréchet-Montel space satisfies the density
condition, but that there are examples of Fréchet spaces without this condi-
tion. We will therefore restrict our attention to metrizable l.c. spaces from this
point on. Since the strong topology in the dual of such a space is localized to
the equicontinuous (or, equivalently, strongly bounded) subsets, our previous
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discussion in connection with (2) inmediately implies the equality £’ = E’,
for each metrizable Lc. space E with density condition. That is, E’, must be
barrelled (or, equivalently, bornological), and hence E must be distinguished
(in Grothendieck’s terminology). But the converse fails since there even exist
reflexive Fréchet spaces without density condition.

The exact position of the class of the Fréchet spaces with density condi-
tion among other (classical) classes of Fréchet spaces can be seen from the fol-
lowing diagram (in which arrows stand for conclusions):

/Montel ———reflexive
nuclear—Schwartz \ % \distinguished

quasinormable -» density condition

In the formulation of the subsequent (Main Characterization) Theorem 2.,
[(F) denotes the l.c. space of all absolutely summable sequences with values
in the Lc. space E, and /, (E",) is the l.c. space of all bounded sequences in £,
(Also note that /{E) equals the completed n-tensor product /, ® E for each Fré-
chet space E.)

2. Theorem. The following assertions for a metrizable l.c. space E are
equivalent:

(1) E satisfies the density condition,
(2) each bounded subset of the strong dual E’, is metrizable,

(3) [(E) is distinguished,
(3 L(E)=W(E)Y, is barrelled/bornological,

(3"} [(E) satisfies the density condition,
(3™) the bounded subsets of [_(E’) are metrizable.

While for general Fréchet spaces E, the density condition is a strictly strong-
er assumption that the distinguishedness, it is a remarkable consequence of
Theorem 2. that the two properties coincide for spaces of the form /(E).

We next turn to a discussion of the density condition for echelon spaces
of order p, 1 € p<co or p=0, and first fix our notation: Let 4=(a,), be a “Kdthe
matrix” on some (nonvoid) index set [; i.e., (a,), is an increasing sequence of
strictly positive functions on [. For 1 <p<oo, A, =A,(I.4) denotes the Fréchet
space of all (real- or complex-valued} generalized sequences x=(x(i}),., on [
such that

(_Z,(a,,(ﬂ | X(i) | P)"e< oo for each ne N,
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A, is called the echelon space of order p associated with 4, and it is the pro-
jective limit proj L(a,) of the “diagonal transforms” i{a,) of I, =l(I). For
p=0, the echelon space A,=A (I 4)= proj c(a,) of order O is defined simi-
larly, using diagonal transforms c,(a,) of the sequence space ¢,=c,(f) of all
“null sequences” on [.

3. Theorem. An echelon space b, = A(1,A) of order p, I <p<oo or p=0, sat-
isfies the density condition if and only if its Kothe matrix A={(a,)}, satisfies the
following condition (D) (independent of p):

There exists an increasing sequence J=(I), .y of subsets I of I such that

a, (i
(N, D) for each me N, there is n,, € N with inf "'()
ety (i)

>0, k=n,+1,n,+2,..,

while
(M.J) for each neN and each I,cl with I \(\,) + ¢ for all meN,

there exists n’=n'(n1)>n with (3) inf a,(i) -0
ety A {1)

Condition (D) had been introduced by Bierstedt-Meise {4] (and we refer
to that article for a more thorough discussion.). Roughly spoken, it requires
that the index set [ can be written as an increasing union of subsets 7, with
the following two properties:

(N,J) The restrictions of all “weights” a,, k=n,, to I, induce the same
weight condition.

(M,J} For any n and any subset [ of 7 which meets the complement of
each I, the restrictions of a, and of some a,., n’= n'(n,I) > n, to I, induce
different weight conditions (in the sense that (3) holds).

For the classical case p = 1 of the Kdthe echelon spaces A, (of order 1), one
actually arrives at a very remarkable characterization.

4. Theorem. For a Kothe echelon space ., = A (LA}, the following asser-
tions are equivalent:

(1) A, is distinguished,
(2) A, satisfies the density condition,
(3) the Kothe matrix A=(a),.x of M(1.A) satisfies condition (D),
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(4) for every sequence (D,),., of positive numbers, there is a sequence (C,),
of positive numbers such that for every neN and every C>0, there exists
meN with

4% Vg supl F o ksm)  (on D).
G, D,

The problem of characterizing the class of the distinguished Kothe eche-
lon spaces A, =A,(/,4) in terms of the Kothe matrices 4 was pointed out in
Bierstedt-Meise-Summers [6]. In Bierstedt-Meise [4], the implication (3)=(1)
of Theorem 4. was proved. Later on, a simpler proof of (3)==(2) was given in
Bierstedt-Meise [5]. Finally, by establishing the converse implications (1}=(2)
and (2)= (3), the authors derived the desired characterization (1)<>(2) <= (3)
in [2]. More recently, D. Vogt [16] noted a short direct proof of (1) < (4). We
also refer to F. Bastin [1] for a discussion of some other equivalent reformu-
lations of (D) and of condition (4) of Theorem 4. (in the more general context
of weighted inductive limits of spaces of continuous functions).

inf{Ca, Stz)

We note that an echelon space A, of orderp, | < p < worp = 0,is al-
ways distinguished and that A, is even reflexive for 1 < 'p < oo, but by Theo-
rem 3., A, = A(1,4) satisfies the density condition if and only if A4 satisfies con-
dition (D). On the other hand, by Theorem 4., the Kothe echelon space A, =
A(1A) (of order 1) is distinguished if and only if it satisfies the density con-
dition, and this is again governed by condition (D). In particular, if the index
set I is countable and A, = A,(7,A4) is not distinguished (as it is the case for the
well-known Kathe-Grothendieck example of a non-distinguished Fréchet space
A, where I = N x M and 4 = (a,), with

Joign

aflij) = { L eN, n=12.)),

l,izn+1

then the corresponding space A, = A(l.4) is a reflexive, separable and hilber-
tizable Fréchet space without density condition (so that, in its separable strong
dual, one can find bounded subsets which are not metrizable).

Finally, we consider Ké6the echelon spaces A (E) = A,(].A:F) with values
in a Fréchet space E. These spaces are defined in a canonical way (replacing
the modulus in K=R or C by the continuous seminorms of E), and we have
h(E)=A4, ®, E as an algebraic and topological equality of Fréchet spaces. The
first part of the following theorem generalizes the equivalence (1)<=(3} of Theo-
rem 2., while the second part provides an “individual” characterization of the
distinguished spaces of type A,(E).

5. Theorem. (@) For a Fréchet space E, the following assertions are
equivalent:
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(1) E satisfies the density condition,

(2) for each distinguished Kothe echelon space A, A(E)=L®.F is dis-
tinguished,

(3) for each distinguished Kothe echelon space A, A,(E) satisfies the den-
sity condition,

(b) If E is a Fréchet space +{0} and A, is a Kdthe echelon space, then the
space h, (E)=A®_E is distinguished, if and only if

(1) A, is Montel and E is distinguished, or
(i) A, is distinguished and E satisfies the density condition.

Thus, while A,®, E satisfies the density condition if and only if both A, and
the Fréchet space E do, the characterization of the distinguished Fréchet spa-
ces A,® F is more delicate: Clearly, if the complete =n-tensor product
A, ®_ E is distinguished, then each of its complemented subspaces A, and F
has to be distinguished, too, but this necessary condition is not sufficient, and
one has to impose a stronger hypothesis on one of the spaces A, or E. And while
the density condition would suffice on the side of Fréchet space E, the Montel
property (or, equivalently, reflexivity) is needed on the side of the Kothe eche-
lon space A, (cf. the equivalence (1)«(2) in Theorem 4.).

In our article [2], we conjectured that the density condition for two gen-
eral Fréchet spaces E and F would not even imply that E @_F must be distin-
guished, but we did not have any counterexamples at that time. Recently, as
a consequence of his method of construction for counterexamples to Grothendieck’s
“probléme des topologies”, J. Taskinen [14] showed that for any Kothe echelon
space A,, there is a Fréchet-Montel space F such that F @, F contains a comple-
mented copy of A, whence it is easy to deduce that there exist even Fréchet-
Montel spaces F such that F ®, F is not distinguished.

Then, perhaps, the right question to ask next is the following one: Is the
negative solution to Grothendieck’s “probléme des topologies” the only ob-
struction to the permanence of the density condition under complete n-tensor
products of Fréchet spaces? That is, must £ ® F satisfy the density condition
if both Fréchet spaces E and F satisfy this condition and if the pair (E F} has
the property that each bounded subset B of E ® F is contained in a set of the
form I'(B,® B,) with B, bounded in £ and B, bounded in F?

A positive answer of this question follows from the next proposition (its
proof is an adaptation of the proof of Proposition 2.7 in [2]).

6. Proposition. Let E denote a metrizable l.c. space with the density con-
dition and F a l.c. space with an increasing fundamental sequence (B,),.x of
closed absolutely convex bounded sets which are metrizable in the topology in-
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duced by F. Then also LE.,F) has a fundamental sequence of bounded subsets
which are metrizable (in the induced topology).

Proof. 1. Let (U),. denote a decreasing basis of closed absolutely convex
0-neighborhoods in E. Then it is well-known that (D)),., forms a fundamen-
tal sequence of (closed absolutely convex) bounded sets in L(E.F) for

D ={Te (E.F), T(U)cB,}, n=12,...

{(e. g., see Dicrolf [8], Prop. 27.). It now suffices to show that O has a countable
basis of neighborhoods in D, for the topology induced by L(E.F), n = 1,2,._.,
and we fix ne N for the rest of the proof.

2. Because of the density condition for E, 0 has a countable basis of neigh-
borhoods in each NU° c E’, N = 1,2,..., and thus there exists a sequence (C)),.x
of closed absolutely convex bounded subsets of £ such that for every Ce B(E)
and every Ne N there is ke N with G°nNU° < C°. In a similar way, using
the fact that each B,c F is metrizable, we find a sequence (V),, y of closed
absolutely convex neighborhoods of O in F such that for every Ve #(F) and
every M e N there is /e N with ¥,nMB,c V. At this point, it is enough to prove
that for each Ce B(E) and each Ve #(F), there exist k/e®N such that

™ {Te L(EF), (IC)cV,}nD,c{Te LE,F), T(C)c V}.

3. Given Ce B(E), we first choose M e N with Cc2MU, and note that
then T(C)c 2MT(U, ) 2MB, for all Te D,. Given Ve #(F) and M e N, there
is e N with V,~nMB,c 1/2 V. Next, for this V,e #(F), we can find N € N with
VW c NB,. Finally, for the given Ce B(E) and this Ne N, there is k€ N with
Cyn2NU; < C°, and taking polars in the dual system < E,E’ > (and closures
with respect to the topology of E), we conclude that

(**) Cc Cc(C°N2NUY =I(C,u sz U,,)CCt-l-_lW U,cCt le U,

To derive the desired conclusion (*), we can now proceed as follows: Fixing
Te D, and taking xe U, and ye ¥°, we have T(x)e B, and ye NB’, whence
|<T(x), y>|<N, and thus YUY NV =NV, holds. If T also satisfies
T(CHc V, an application of (**) vields

NOcT(C) +I/NTWU)c V,+ V=2V,

But we have noted that T(C)c2MB, holds as well, and hence we obtain
TCYyc 2V n2ZMB,c V, as desired. O
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7. Corollary. Let E and F be Fréchet spaces with the density condition. If
E ®,F has the property (BB) that each bounded subset B of E ®, F is contained
in a set of the form I'(B,®B,) with B, bounded in E and B, bounded in F, then
E @ F has the density condition (and hence is distinguished).

Proof. If is well-known (e.g., see Grothendieck’s thesis [9]) that, as a conse-
quence of property (BB), (E ®_F)’, and L, (E,F,") can be identified canonically.
By Proposition 6. (and the equivalence (1) < (2) of theorem 2.), £ ® F must
now satisfy the density condition. O

From Grothendieck [9] and Taskinen [11], [13], we know that E ®_F has
property (BB) for many pairs (E,F) of Fréchet spaces. First, one can find the
following cases in [9]:

(i) Both E and F are Banach spaces,
(ii) both E and F are Schwartz spaces,

(iii) E or Fis an L'-space with respect to a measure on a locally compact
space (more generally, E or F can be an LY{((n ;),.)-space in the sense of [9]),

(iv) F or Fis nuclear.

Grothendieck also claims that E ® F satisfies (BB) if both E and F are hil-
bertisable Fréchet spaces, but he does not include a full proof of this claim,
and there seems to be some doubt whether his argument is correct (cf. Taski-
nen [13], Section 2.4).

In [11], Taskinen proves property (BB) for projective tensor products
E ®_F of Fréchet spaces such that

(v) both £ and F have a certain kind of basis (e.g., #- or X-Kothe sequence
spaces, where X is a Banach space with a 1-unconditional basis), or £ is a Fré-
chet space with this kind of basis and F is a Banach space.

He also notes that property (BB} is inherited when one takes countable prod-
ucts of Fréchet spaces.

Fréchet spaces E such that E &, F has property (BB) for each Fréchet space
F (resp., for each Banach space F) are called {FBB)-spaces (resp., (FBa)-spaces)
in Taskinen [13], and he proceeds to study these classes. Roughly spoken, some
of his results read as follows:

(vi) Fréchet-Schwartz spaces and L((p ;),.z)-spaces, 1 €p< oo, are (FBa)-
spaces “provided that certain pathologies are excluded” (quote).

Moreover, E ®_F definitely has property (BB) if
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(vii) E is a separable hilbertisable Fréchet space and F is a separable Ba-
nach space (or, more generally, F is a separable (FBa)-space), or if both E and
F are separable hilbertisable Fréchet spaces.

Finally,
{viii) a Banach space is an (FBB)-space if and only if it is a /,-space,
and we also refer to [13], Section 3.2 for various related results.

Of course, in view of Corollary 7., each proposition on property (BB) for
the projective tensor product of two Fréchet spaces E and F also yields a cor-
ollary on spaces £ ® F wich satisfy the density condition and hence are dis-
tinguished. However, since the projective tensor product of two normed spa-
ces is a Banach space and since Grothendieck [9] already observed that E ® F
is quasinormable (resp., a Schwartz space) if (and only if) both E and F are
quasinormable (resp., Schwartz spaces), the cases (i) and (ii) above are really
mnot important in this connection (and have only been listed for purposes of
completeness of the list); also note that the distinguished case of (iv) is im-
plied by another result of Grothendieck [9] (whereby E ®_F is distinguished
if one of the Fréchet spaces E,F is nuclear and the other one is distinguished).

2. THE DUAL DENSITY CONDITIONS FOR (DF)-SPACES

In the present report on our work from [2] and [3], we have concentrated
on the results which we obtained, without going into the details of the proofs.
But even from our first considerations just after Definition 1.1 and from the
equivalences (1)<(2)<(3"}<>(3"™) of Theorem 1.2, it should already be clear
that duality theory played a large role in these proofs. In fact, the “right” for-
mulation of the density condition for a metrizable l.c. space E might be con-
dition (2) of Theorem 1.2 in terms of the metrizability of the bounded subsets
of the strong dual E’,. From this point of view, it turns out that the proper set-
ting for many results and methods is the larger class of (DFj-spaces intro-
duced by Grothendieck) rather than its subclass of strong duals of Fréchet spa-
ces. In this context, however, there are two different natural candidates for a
“dual density condition”.

1. Definition. As before, let E denote a L.c. space, B(E) the system of all (closed
absolutely convex) bounded subsets of E and #/(E) the system of all (closed ab-
solutely convex) neighborhoords of 0 in E.

Then E is said to satisfy the strong dual density condition (SDDC), resp.
the dual density condition (DDC), if, given any function \: B(E)»R \{0} and
an arbitrary A € B(E), there always exist a finite subset B of B(E} and Ue #{E)
such that
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@4 AnUc I“(aun MB)B), resp. A nUc 1‘(:;5 AMB)B).

Note that it was irrelevant whether one took the absolutely convex hull or
the closed absolutely convex hull on the left hand side of inclusion (2) in Sec-
tion 1.: The sets M(L)U" are absolutely convex and o(E’,E)-compact so that
the absolutely convex hull of the finite union U AMU)U” is again o(E’,E)-com-

Ve
pact and hence a fortiori closed in E’, where E is any l.c. space. On the other
hand, in general, even a (DF)-space E may not allow any fundamental sequence
B(E) of closed absolutely convex bounded subsets B which are compact with
respect to some weaker topology on K. Hence we do have two possibilities on
the right hand side of (4) and thus the difference between (SDDC) and (DDC)
in Definition 1.

It is clear from the definitions that a quasibarrelled l.c. space E satisfies
the density condition if and only if its strong dual £, satisfies (DDC) or, equiv-
alenty, (SDDC), and that (SDDC) always implies (DDC). Moreover, just as
every quasinormable L.c. space satifies the density condition, one easily veri-
fies that every l.c. space with the strict Mackey convergence condition (and hence,
in particular, every metrizable l.c. space) satisfies (SDDC). And as in the class
of the metrizable Lc. spaces, the density condition implies distinguishedness,
each (gDF)-space with (SDDC) (resp., (DDC)) must be bornological (resp.,
quasibarrelled), but again the converse does not hold. Finally, due to the work
of M. Valdivia [15], it is now possible to exhibit examples of (DF)-spaces with
(DDC) which are not bornological and thus cannot satisfy (SDDC) so that the
two classes of (DF)-spaces with (DDC) resp. (SDDC) are indeed different.

The following (Main Characterization) Theorem 2. corresponds to Theo-
rem 1.2 and at the same time generalizes that result.

2. Theorem. Let E denote a (DF)-space.
(a) The following assertions are equivalent:

(1) E satisfies the dual density condition (DDC)},
(2) each bounded subset of E is metrizable,
(3) the space | (E) is quasibarrelled,
(3 [ (F) satisfies (DDC),
(37 each bounded subset of [_(E) is metrizable.

(b) Similarly, the following assertions are equivalent:

(1} E satisfies the strong dual density condition (SDDC},
(2} the space I (E) is bornological,
(2} 1(E) satisfies (SDDC).
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We recall that the l.c. space [ (E) of all bounded E-valued sequences is a
{DF)-space for every (DF)-space E by a result of S. Dierolf [8]. The equiva-
lence (a), (1)==(2) justifies our terminology concerning (DDC) and (SDDC).
Next, note that the assumption in Theorem 2. that £ is a (DF)-space cannot
be weakened to the hypothesis of a (gDF)-space: For instance, the space
(CB(R),p) of all bounded continuous functions on the real line under the strict
topology [ is a (gDF)-space with metrizable bounded subsets which is not qua-
sibarrelled. Thus, the class of (DF)-spaces is indeed the proper setting for the
present results, and we will restrict our attention to this class from now on.

It is possible to complete our characterization of certain l.c. properties for
the (DF)-spaces of type /_(E), using a technique of A. Defant - W. Govaerts [7):

3. Corollary. If E is a (DF)-space, then [ (E) is barrelled (resp., ultrabor-
nological) if and only if E is barrelled (resp., ultrabornological) and satisfies
the dual density condition (DDC) (resp., the strong dual density condition
(SDDC)).

The results of Section 1. on the echelon spaces A, | <p<oo or p=0; ie.,
Theorems 1.3 and 1.4, have a natural interpretation in terms of the dual co-
echelon spaces K, and k, 1/p+1/g=1 and g=1 for p=0, but this is rather
trivial, and we leave it to the reader. {Our notation concerning co-echelon
spaces is taken from [6].)

Thus, we immediately turn to the results in the present context which cor-
respond to Theorem 1.5. As we have treated Kothe echelon spaces A,(E)=
A(IA;E) with values in a Fréchet space F there, we can now study Kdthe co-
echelon spaces K (E) = K _(I.V:F) and k_(E) = k_ (I,V:E) with values in an
arbitrary (DF)-space. The subsequent results are indeed valid in this general
setting, and vector-valued Kothe co-echelon spaces provide a useful tool for
the proofs. However, the introduction of the spaces K_ and K_(F) would re-
quire several additional definitions and various comments. On the other hand,
if E is a locally complete .. space, it is easy to establish a (canonical) topo-
logical isomorphism of K _(E)=K_(I,V;E) with the space LA .E) =
L\ (I.4),E) of continuous linear mappings, where V is associated with A. That
is the reason why, for the purposes of a simpler exposition, we prefer in the
sequel to formulate our results in terms of spaces of continuous linear map-
pings from a Kothe echelon space A, into a locally complete (DF)-space.

We start with the following result (which can easily be deduced from the
topological duality (A,(F)Y,= (A®,FY, =K_(F) if the space E is the strong dual
F’, of some Fréchet space F, and) which should be compared with the exam-
ples (due to J. Taskinen [12]) of Fréchet-Montel spaces / and Banach spaces
E such that L(F,E) fails to be a {DF)-space.
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4. Proposition. If E is a locally complete I.c. space, then L\ ,E) is a (DF)-
space if and only if E is.

Next, we come to the analog of Theorem 1.5. Part {a) of this theorem gen-
eralizes Theorem 2. above (in view of the topological isomorphism /[ (E)=
L!,E) for locally complete l.c. spaces E). Also note that the characterization
of the locally complete (quasi-) barrelled (DF)-spaces of type L(A,, E) in Theo-
rem 5.(b) exhibits the same dichotomy which we already know from Theorem
1.5.(b).

5. Theorem. (a} For a locally complete (DF)-space E, the following asser-
tions are equivalent:

(1) E satisfies (DDC) (resp., (SDDC)),

(2) for each distinguished Kothe echelon space A, the space L\ ,E) is qua-
sibarrelled or, equivalently, barrelled (resp., bornological or, equivalently,
ultrabornological),

(3) for each distinguished Kcthe echelon space A, the space L\, E) satis-
Jies (DDC) (resp., (SDDC)).

(b) IfE is a locally complete (DF)-space {0} and A, is a Kothe echelon
space, then LA, E) is quasibarrelled (or, equivalently, barrelled) if and only if

(1) A, is Montel and E is (quasi-) barrelled, or
(1) A, is distinguished and E satisfies (DDC).

One can conjecture that the result corresponding to Theorem 5.(b) with
L(’,E) and E bornological (instead of barrelled) and (SDDC) (instead of
(DDC)) for E 1s also valid. Unfortunately, we are not able to prove such an
individual characterization of the locally complete bornological (DF)-spaces
of type L,(A.E) at the moment. But we do have partial results with a (small)
gap between the necessary and the sufficient conditions.

6. Proposition. Let £+{0} denote a locally complete (DF)-space. If L(A,,E)
is bornological, then A, has to be distinguished and E has to be bornological;
moreover, if A, is not Montel, then E must definitely also satisfy (SDDC). Con-
versely, if b, is distinguished and E satisfies (SDDC), but also if A, is a Schwartz
space and E is a bornological space such that each sequence converg-
ing to zero is a local null sequence, then L(\.E} is again bornological,

We do not intend to give a sketch of proof of Theorem 3. or Proposition
6. here, but we would like to outline one approach to results of this type since
it also serves to put them in the proper perspective. Let us recall that A, =
A(LA), A=(a,), is nothing but the projective limit proj /{a,) of the diagonal
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transforms /,(a,) of the space /,={(J). From this point of view the following
theorem answers a natural question wich comes up in this context,

7. Theorem. Let E denote a locally complete l.c. space with the countable neigh-
borhood property (e.g., E can be a locally complete (gDF)-space) and A, a dis-
tinguished Kothe echelon space. Then we have a (canonical) topological
isomorphism

Ly, E)=Lyprojl{a,),E)=indL(I(a,).E) (=ind [ (v,E)=k (L, VIE),

where [ (v,E) denotes the diagonal transform of the space { \E} = I_(IE) of
all bounded E-valued generalized sequences on I by the function

v,=1/a, neN).

In the context of the vector-valued Kdéthe co-echelon spaces K _(E) =
K_(ILV:E)and k_(E}Y =k_(I,V:E), Theorem 7. is a “projective description result”
for k_{E) (and it also holds more generally for weighted inductive limits of spa-
ces of continuous E-valued functions, cf. Section 4. of [3]).

It is now quite interesting to compare Theorem 5. and Proposition 6. for
LA LE), E locally complete (DF), with similar results for the topological lin-
ear subspace (A,Y,®, E of all mappings in L,(A,,E) with finite dimensional range,
respectively for the completion (A,)’,®,E of this tensor product, which coin-
cides with the subspace of all those mappings in L,(A,,E) for which the image
of each bounded set in X, is precompact in E whenever E is complete. In fact,
it turns out that the dual density conditions do not occur in the context of the
g-tensor products, and that they come in only when one passes from the cor-
responding subspaces to all of L(A,E). This phenomenon also serves to ex-
plain one aspect of the dichotomy in Theorem 5. (b) in a very satisfactory
way. We collect the main results in our final theorem.

8. Theorem. (a) If A, is an arbitrary Kothe echelon space and E is a (DF)-
space, the e-tensor product (A,),®, E, and hence also its completion
(A), ®, E, is again a (DF)-space.

(b) For a Kothe echelon space A, and a (DF)-space E, (\,),®.E is quasi-
barrelled (resp., bornological) if and only ), is distinguished and E is quasibar-
relled (resp., bornological).

(c) IfA, denotes a Kéthe echelon space and E a complete (DF)-space, the
Jollowing conditions are necessary and sufficient for the barrelledness of
(A, ®, E: A, is distinguished and E is barrelled.

The case of the complete bornological (DF)-spaces of type (A,),®.E again
presents some technical difficulties, and we only state the following partial
results:
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Let A, be a Kothe echelon space and E a complete (DF)-space. (k,)’,,@,E bor-
nological clearly implies A, distinguished and E bornological. Conversely, if &,
is quasinormable and E is a bornological space such that every absolutely con-
vex compact subset K of E is “very compact”, in the sense that there is an ab-
solutely convex bounded set B — E such that K is (contained and) compact
in E,, (A,),® F is (ultra-) bornological.

In concluding, we remark that Proposition 6. of Section 1. has the follow-
ing obvious consequence:

9. Proposition. Let E denote a metrizable l.c. space with the density con-
dition and F a (DF)-space with (DDC). If L(E,F) is again a (DF)-space, then
L{E,F) satisfies (DDC) (and hence is quasibarrelled).

In some sense, this proposition generalizes Corollary 1.7. (Note that prop-
erty (BB) for the projective tensor product E® F of two Fréchet spaces implies
that L(E,F’,) is a (DF)-space, and even the strong dual of a Fréchet space.)

Finally, we remark that the general hypotheses of this section; viz., that £
can be an arbitrary (DF)-space (but it is not required that E is the strong dual
of some Fréchet space), allow to apply the results e.g. to countable inductive
limits of normed spaces. In particular, if an (LB)-space E=ind E, is boundedly

retractive; i.e., if for each bounded subset B of E, there is an index n =n(B)e N
such that B is contained and bounded in E, and such that the topologies of E
and E, coincide on B, then E clearly satisfies (DDC) since all bounded subsets
are metrizable. but one can easily show by using the equivalence (1)<(2) of
Theorem 2.(b) that it even satisfies (SDDC). (If E=ind E, is a countabl¢ in-

jective boundedly retractive Lc. inductive limit of (DF)-spaces, then [ (£)=
ind /_(E,) holds algebraically and topologically.)

In fact, originally, our main motivation for the introduction of the dual den-
sity condition in the context of (DF)-spaces and for the work on which we
have reported in this section were interesting applications to weighted induc-
tive limits VC(X) of spaces of the continuous functions. Howewer, an account
of these applications is beyond the scope of the present (introductory) survey,
and we have 1o refer to the last part of our original article [3].
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