10 research outputs found

    Low energy neutrino astronomy with the large liquid scintillation detector LENA

    Get PDF
    The detection of low energy neutrinos in a large scintillation detector may provide further important information on astrophysical processes as supernova physics, solar physics and elementary particle physics as well as geophysics. In this contribution, a new project for Low Energy Neutrino Astronomy (LENA) consisting of a 50kt scintillation detector is presented.Comment: Proccedings of the International School of Nuclear Physics, Neutrinos in Cosmology, in Astro, Particle and Nuclear Physics, Erice (SICILY) 16 - 24 Sept. 200

    Reactor Neutrino Experiments with a Large Liquid Scintillator Detector

    Full text link
    We discuss several new ideas for reactor neutrino oscillation experiments with a Large Liquid Scintillator Detector. We consider two different scenarios for a measurement of the small mixing angle θ13\theta_{13} with a mobile νˉe\bar{\nu}_e source: a nuclear-powered ship, such as a submarine or an icebreaker, and a land-based scenario with a mobile reactor. The former setup can achieve a sensitivity to sin22θ130.003\sin^2 2\theta_{13} \lesssim 0.003 at the 90% confidence level, while the latter performs only slightly better than Double Chooz. Furthermore, we study the precision that can be achieved for the solar parameters, sin22θ12\sin^2 2\theta_{12} and Δm212\Delta m_{21}^2, with a mobile reactor and with a conventional power station. With the mobile reactor, a precision slightly better than from current global fit data is possible, while with a power reactor, the accuracy can be reduced to less than 1%. Such a precision is crucial for testing theoretical models, e.g. quark-lepton complementarity.Comment: 18 pages, 3 figures, 2 tables, revised version, to appear in JHEP, Fig. 1 extended, Formula added, minor changes, results unchange

    U_{PMNS} = U_ell^dagger U_nu

    Full text link
    We consider corrections to vanishing U_{e3} and maximal atmospheric neutrino mixing originating from the relation U = U_ell^dagger U_nu, where U is the PMNS mixing matrix and U_ell (U_nu) is associated with the diagonalization of the charged lepton (neutrino) mass matrix. We assume that in the limit of U_ell or U_nu being the unit matrix, one has U_{e3} = 0 and theta_{23} = pi/4, while the solar neutrino mixing angle is a free parameter. Well-known special cases of the indicated scenario are the bimaximal and tri-bimaximal mixing schemes. If U_{e3} \neq 0 and theta_{23} \neq pi/4 due to corrections from the charged leptons, |U_{e3}| can be sizable (close to the existing upper limit) and we find that the value of the solar neutrino mixing angle is linked to the magnitude of CP violation in neutrino oscillations. In the alternative case of the neutrino sector correcting U_{e3} = 0 and theta_{23} = pi/4, we obtain a generically smaller |U_{e3}| than in the first case. Now the magnitude of CP violation in neutrino oscillations is connected to the value of the atmospheric neutrino mixing angle theta_{23}. We find that both cases are in agreement with present observations. We also introduce parametrization independent "sum-rules" for the oscillation parameters.Comment: 19 pages, 3 figures. Comments and references adde

    A complete 3D numerical study of the effects of pseudoscalar-photon mixing on quasar polarizations

    Full text link
    We present the results of three-dimensional simulations of quasar polarizations in the presence of pseudoscalar-photon mixing in the intergalactic medium. The intergalactic magnetic field is assumed to be uncorrelated in wave vector space but correlated in real space. Such a field may be obtained if its origin is primordial. Furthermore we assume that the quasars, located at cosmological distances, have negligible initial polarization. In the presence of pseudoscalar-photon mixing we show, through a direct comparison with observations, that this may explain the observed large scale alignments in quasar polarizations within the framework of big bang cosmology. We find that the simulation results give a reasonably good fit to the observed data.Comment: 15 pages, 8 figures, significant changes, to appear in EPJ

    Effects of Axion-Photon Mixing on Gamma-Ray Spectra from Magnetized Astrophysical Sources

    No full text
    9 revtex pages, 3 eps figures includedAstrophysical gamma-ray sources come in a variety of sizes and magnetizations. We deduce general conditions under which gamma-ray spectra from such sources would be significantly affected by axion-photon mixing. We show that, depending on strength and coherence of the magnetic field, axion couplings down to ~ (10^13 GeV)^-1 can give rise to significant axion-photon conversions in the environment of accreting massive black holes. Resonances can occur between the axion mass term and the plasma frequency term as well as between the plasma frequency term and the vacuum Cotton-Mouton shift. Both resonances and non-resonant transitions could induce detectable features or even strong suppressions in finite energy intervals of gamma-ray spectra from active galactic nuclei. Such effects can occur at keV to TeV energies for couplings that are currently allowed by all experimental constraints
    corecore