170 research outputs found

    The Feel-Good Effect at Mega Sport Events - Recommendations for Public and Private Administration Informed by the Experience of the FIFA World Cup 2006

    Full text link

    Previous Lung Diseases and Lung Cancer Risk: A Systematic Review and Meta-Analysis

    Get PDF
    In order to review the epidemiologic evidence concerning previous lung diseases as risk factors for lung cancer, a meta-analysis and systematic review was conducted.Relevant studies were identified through MEDLINE searches. Using random effects models, summary effects of specific previous conditions were evaluated separately and combined. Stratified analyses were conducted based on smoking status, gender, control sources and continent.A previous history of COPD, chronic bronchitis or emphysema conferred relative risks (RR) of 2.22 (95% confidence interval (CI): 1.66, 2.97) (from 16 studies), 1.52 (95% CI: 1.25, 1.84) (from 23 studies) and 2.04 (95% CI: 1.72, 2.41) (from 20 studies), respectively, and for all these diseases combined 1.80 (95% CI: 1.60, 2.11) (from 39 studies). The RR of lung cancer for subjects with a previous history of pneumonia was 1.43 (95% CI: 1.22-1.68) (from 22 studies) and for subjects with a previous history of tuberculosis was 1.76 (95% CI=1.49, 2.08), (from 30 studies). Effects were attenuated when restricting analysis to never smokers only for COPD/emphysema/chronic bronchitis (RR=1.22, 0.97-1.53), however remained significant for pneumonia 1.36 (95% CI: 1.10, 1.69) (from 8 studies) and tuberculosis 1.90 (95% CI: 1.45, 2.50) (from 11 studies).Previous lung diseases are associated with an increased risk of lung cancer with the evidence among never smokers supporting a direct relationship between previous lung diseases and lung cancer

    State of the art. Overview of concepts, indicators and methodologies used for analyzing the social OMC.

    Get PDF
    This paper is a detailed analysis about the literature on the Social OMC from 2006-2010, focusing on how OMC research has been carried out. It specifically points to which theoretical framework/concepts are used, and how change is conceptualised and measured. It is organised in five sections. The first concerns visibility and awareness about the OMC; the second analyses research on the EU level coordination process; the third scrutinizes how features of the OMC have been analysed. The fourth and fifth sections, addressing how national integration of the OMC has been researched, respectively address substantive policy change as well as national policy-making. Strikingly, virtually all OMC research adopts theoretical frameworks derived from literature on Europeanisation and/or institutionalisation. Also, as the OMC is voluntary and sanction-free, it depends heavily on how and the the extent to which actors use it (agenda-setting, conflict resolution, maintaining focus on a policy issue, developing a policy dialogue, etc). OMC research has become nuanced and does highlight how, for which purpose and with which outcome actors engage with the OMC. Another finding is that there is data on policy issues addressed through the OMC, learning does take place and there is knowledge about domestic policy problems. However, the linkage between knowledge of an issue and direct use of the OMC for policy change in social policy is weak, but that may change with EU2020, where social policy has received a higher profile. Most research covers the EU-15, much more research needs to be undertaken in newer EU member states

    Human and mouse essentiality screens as a resource for disease gene discovery.

    Get PDF
    The identification of causal variants in sequencing studies remains a considerable challenge that can be partially addressed by new gene-specific knowledge. Here, we integrate measures of how essential a gene is to supporting life, as inferred from viability and phenotyping screens performed on knockout mice by the International Mouse Phenotyping Consortium and essentiality screens carried out on human cell lines. We propose a cross-species gene classification across the Full Spectrum of Intolerance to Loss-of-function (FUSIL) and demonstrate that genes in five mutually exclusive FUSIL categories have differing biological properties. Most notably, Mendelian disease genes, particularly those associated with developmental disorders, are highly overrepresented among genes non-essential for cell survival but required for organism development. After screening developmental disorder cases from three independent disease sequencing consortia, we identify potentially pathogenic variants in genes not previously associated with rare diseases. We therefore propose FUSIL as an efficient approach for disease gene discovery

    Genomic loci susceptible to systematic sequencing bias in clinical whole genomes

    Get PDF
    Accurate massively parallel sequencing (MPS) of genetic variants is key to many areas of science and medicine, such as cataloging population genetic variation and diagnosing genetic diseases. Certain genomic positions can be prone to higher rates of systematic sequencing and alignment bias that limit accuracy, resulting in false positive variant calls. Current standard practices to differentiate between loci that can and cannot be sequenced with high confidence utilize consensus between different sequencing methods as a proxy for sequencing confidence. These practices have significant limitations, and alternative methods are required to overcome them. We have developed a novel statistical method based on summarizing sequenced reads from whole-genome clinical samples and cataloging them in “Incremental Databases” that maintain individual confidentiality. Allele statistics were cataloged for each genomic position that consistently showed systematic biases with the corresponding MPS sequencing pipeline. We found systematic biases present at ∼1%–3% of the human autosomal genome across five patient cohorts. We identified which genomic regions were more or less prone to systematic biases, including large homopolymer flanks (odds ratio = 23.29–33.69) and the NIST high confidence genomic regions (odds ratio = 0.154–0.191). We confirmed our predictions on a gold-standard reference genome and showed that these systematic biases can lead to suspect variant calls within clinical panels. Our results recommend increased caution to address systematic biases in whole-genome sequencing and alignment. This study provides the implementation of a simple statistical approach to enhance quality control of clinically sequenced samples by flagging variants at suspect loci for further analysis or exclusion

    MHC class I–associated phosphopeptides are the targets of memory-like immunity in Leukemia

    Get PDF
    Deregulation of signaling pathways involving phosphorylation is a hallmark of malignant transformation. Degradation of phosphoproteins generates cancer-specific phosphopeptides that are associated with MHC-I and II molecules and recognized by T-cells. We identified 95 phosphopeptides presented on the surface of primary hematological tumors and normal tissues, including 61 that were tumor-specific. Phosphopeptides were more prevalent on more aggressive and malignant samples. CD8 T-cell lines specific for these phosphopeptides recognized and killed both leukemia cell lines and HLA-matched primary leukemia cells ex vivo. Healthy individuals showed surprisingly high levels of CD8 T-cell responses against many of these phosphopeptides within the circulating memory compartment. This immunity was significantly reduced or absent in some leukemia patients, which correlated with clinical outcome, and was restored following allogeneic stem cell transplantation. These results suggest that phosphopeptides may be targets of cancer immune surveillance in humans, and point to their importance for development of vaccine-based and T-cell adoptive transfer immunotherapies.

    Measurement of the nuclear modification factor for muons from charm and bottom hadrons in Pb+Pb collisions at 5.02 TeV with the ATLAS detector

    Get PDF
    Heavy-flavour hadron production provides information about the transport properties and microscopic structure of the quark-gluon plasma created in ultra-relativistic heavy-ion collisions. A measurement of the muons from semileptonic decays of charm and bottom hadrons produced in Pb+Pb and pp collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV with the ATLAS detector at the Large Hadron Collider is presented. The Pb+Pb data were collected in 2015 and 2018 with sampled integrated luminosities of 208 mu b(-1) and 38 mu b(-1), respectively, and pp data with a sampled integrated luminosity of 1.17 pb(-1) were collected in 2017. Muons from heavy-flavour semileptonic decays are separated from the light-flavour hadronic background using the momentum imbalance between the inner detector and muon spectrometer measurements, and muons originating from charm and bottom decays are further separated via the muon track's transverse impact parameter. Differential yields in Pb+Pb collisions and differential cross sections in pp collisions for such muons are measured as a function of muon transverse momentum from 4 GeV to 30 GeV in the absolute pseudorapidity interval vertical bar eta vertical bar < 2. Nuclear modification factors for charm and bottom muons are presented as a function of muon transverse momentum in intervals of Pb+Pb collision centrality. The bottom muon results are the most precise measurement of b quark nuclear modification at low transverse momentum where reconstruction of B hadrons is challenging. The measured nuclear modification factors quantify a significant suppression of the yields of muons from decays of charm and bottom hadrons, with stronger effects for muons from charm hadron decays

    A search for an unexpected asymmetry in the production of e+μ− and e−μ+ pairs in proton-proton collisions recorded by the ATLAS detector at root s = 13 TeV

    Get PDF
    This search, a type not previously performed at ATLAS, uses a comparison of the production cross sections for e(+)mu(-) and e(-)mu(+) pairs to constrain physics processes beyond the Standard Model. It uses 139 fb(-1) of proton-proton collision data recorded at root s = 13 TeV at the LHC. Targeting sources of new physics which prefer final states containing e(+)mu(-) and e(-)mu(+), the search contains two broad signal regions which are used to provide model-independent constraints on the ratio of cross sections at the 2% level. The search also has two special selections targeting supersymmetric models and leptoquark signatures. Observations using one of these selections are able to exclude, at 95% confidence level, singly produced smuons with masses up to 640 GeV in a model in which the only other light sparticle is a neutralino when the R-parity-violating coupling lambda(23)(1)' is close to unity. Observations using the other selection exclude scalar leptoquarks with masses below 1880 GeV when g(1R)(eu) = g(1R)(mu c) = 1, at 95% confidence level. The limit on the coupling reduces to g(1R)(eu) = g(1R)(mu c) = 0.46 for a mass of 1420 GeV

    Inclusive and multiplicity dependent production of electrons from heavy-flavour hadron decays in pp and p-Pb collisions

    Get PDF
    Measurements of the production of electrons from heavy-flavour hadron decays in pp collisions at root s = 13 TeV at midrapidity with the ALICE detector are presented down to a transverse momentum (p(T)) of 0.2 GeV/c and up to p(T) = 35 GeV/c, which is the largest momentum range probed for inclusive electron measurements in ALICE. In p-Pb collisions, the production cross section and the nuclear modification factor of electrons from heavy-flavour hadron decays are measured in the p(T) range 0.5 < p(T) < 26 GeV/c at root s(NN) = 8.16 TeV. The nuclear modification factor is found to be consistent with unity within the statistical and systematic uncertainties. In both collision systems, first measurements of the yields of electrons from heavy-flavour hadron decays in different multiplicity intervals normalised to the multiplicity-integrated yield (self-normalised yield) at midrapidity are reported as a function of the self-normalised charged-particle multiplicity estimated at midrapidity. The self-normalised yields in pp and p-Pb collisions grow faster than linear with the self-normalised multiplicity. A strong p(T) dependence is observed in pp collisions, where the yield of high-p(T) electrons increases faster as a function of multiplicity than the one of low-p(T) electrons. The measurement in p-Pb collisions shows no p(T) dependence within uncertainties. The self-normalised yields in pp and p-Pb collisions are compared with measurements of other heavy-flavour, light-flavour, and strange particles, and with Monte Carlo simulations
    corecore