1,068 research outputs found

    Absence of a consistent classical equation of motion for a mass-renormalized point charge

    Full text link
    The restrictions of analyticity, relativistic (Born) rigidity, and negligible O(a) terms involved in the evaluation of the self electromagnetic force on an extended charged sphere of radius "a" are explicitly revealed and taken into account in order to obtain a classical equation of motion of the extended charge that is both causal and conserves momentum-energy. Because the power-series expansion used in the evaluation of the self force becomes invalid during transition time intervals immediately following the application and termination of an otherwise analytic externally applied force, transition forces must be included during these transition time intervals to remove the noncausal pre-acceleration and pre-deceleration from the solutions to the equation of motion without the transition forces. For the extended charged sphere, the transition forces can be chosen to maintain conservation of momentum-energy in the causal solutions to the equation of motion within the restrictions of relativistic rigidity and negligible O(a) terms under which the equation of motion is derived. However, it is shown that renormalization of the electrostatic mass to a finite value as the radius of the charge approaches zero introduces a violation of momentum-energy conservation into the causal solutions to the equation of motion of the point charge if the magnitude of the external force becomes too large. That is, the causal classical equation of motion of a point charge with renormalized mass experiences a high acceleration catastrophe.Comment: 13 pages, No figure

    Distinction between the Poole-Frenkel and tunneling models of electric field-stimulated carrier emission from deep levels in semiconductors

    Get PDF
    The enhancement of the emission rate of charge carriers from deep-level defects in electric field is routinely used to determine the charge state of the defects. However, only a limited number of defects can be satisfactorily described by the Poole-Frenkel theory. An electric field dependence different from that expected from the Poole-Frenkel theory has been repeatedly reported in the literature, and no unambiguous identification of the charge state of the defect could be made. In this article, the electric field dependencies of emission of carriers from DX centers in AlxGa1-xAs:Te, Cu pairs in silicon, and Ge:Hg have been studied applying static and terahertz electric fields, and analyzed by using the models of Poole-Frenkel and phonon assisted tunneling. It is shown that phonon assisted tunneling and Poole-Frenkel emission are two competitive mechanisms of enhancement of emission of carriers, and their relative contribution is determined by the charge state of the defect and by the electric-field strength. At high-electric field strengths carrier emission is dominated by tunneling independently of the charge state of the impurity. For neutral impurities, where Poole-Frenkel lowering of the emission barrier does not occur, the phonon assisted tunneling model describes well the experimental data also in the low-field region. For charged impurities the transition from phonon assisted tunneling at high fields to Poole-Frenkel effect at low fields can be traced back. It is suggested that the Poole-Frenkel and tunneling models can be distinguished by plotting logarithm of the emission rate against the square root or against the square of the electric field, respectively. This analysis enables one to unambiguously determine the charge state of a deep-level defect

    Evidence for mechanical and chemical alteration of iron‐nickel meteorites on Mars: Process insights for Meridiani Planum

    Get PDF
    The weathering of meteorites found on Mars involves chemical and physical processes that can provide clues to climate conditions at the location of their discovery. Beginning on sol 1961, the Opportunity rover encountered three large iron meteorites within a few hundred meters of each other. In order of discovery, these rocks have been assigned the unofficial names Block Island, Shelter Island, and Mackinac Island. Each rock presents a unique but complimentary set of features that increase our understanding of weathering processes at Meridiani Planum. Significant morphologic characteristics interpretable as weathering features include (1) a large pit in Block Island, lined with delicate iron protrusions suggestive of inclusion removal by corrosive interaction; (2) differentially eroded kamacite and taenite lamellae in Block Island and Shelter Island, providing relative timing through crosscutting relationships with deposition of (3) an iron oxide–rich dark coating; (4) regmaglypted surfaces testifying to regions of minimal surface modification, with other regions in the same meteorites exhibiting (5) large‐scale, cavernous weathering (in Shelter Island and Mackinac Island). We conclude that the current size of the rocks is approximate to their original postfall contours. Their morphology thus likely results from a combination of atmospheric interaction and postfall weathering effects. Among our specific findings is evidence supporting (1) at least one possible episode of aqueous acidic exposure for Block Island; (2) ripple migration over portions of the meteorites; (3) a minimum of two separate episodes of wind abrasion; alternating with (4) at least one episode of coating‐forming chemical alteration, most likely at subzero temperatures

    When and How Can Endpoints Be Changed after Initiation of a Randomized Clinical Trial?

    Get PDF
    Contains fulltext : 52680.pdf ( ) (Open Access)OBJECTIVES: It is unclear whether insulin-like growth factor (IGF) function is involved in the pathophysiology of chronic fatigue syndrome (CFS). Unpublished data and reports in patient organization newsletters suggest that Acclydine, a food supplement, could be effective in the treatment of CFS by increasing biologically active IGF1 levels. Here we aimed to measure the IGF1 and IGF binding protein (IGFBP) 3 status of CFS patients compared to age- and gender-matched neighborhood controls, and to assess the effect of Acclydine on fatigue severity, functional impairment, and biologically active IGF1 level (IGFBP3/IGF1 ratio). DESIGN: A randomized, placebo-controlled, double-blind clinical trial. SETTING: Radboud University Nijmegen Medical Centre, The Netherlands. PARTICIPANTS: Fifty-seven adult patients who fulfilled the US Centers for Disease Control and Prevention criteria for CFS. IGF status of 22 CFS patients was compared to that of 22 healthy age- and gender-matched neighborhood control individuals. INTERVENTION: Acclydine or placebo for 14 wk. OUTCOME MEASURES: Outcomes were fatigue severity (Checklist Individual Strength, subscale fatigue severity [CIS-fatigue]), functional impairment (Sickness Impact Profile-8 [SIP-8]), and biologically active IGF1 serum concentrations. Analyses were on an intention-to-treat basis. RESULTS: There was no difference in IGF status in 22 CFS patients compared to healthy age- and gender-matched control individuals. Treatment with Acclydine did not result in significant differences compared with the placebo group on any of the outcome measures: CIS-fatigue +1.1 (95% CI -4.4 to +6.5, p = 0.70), SIP-8 +59.1 (95% CI -201.7 to +319.8, p = 0.65), and IGFBP3/IGF1 ratio -0.5 (95% CI -2.8 to +1.7, p = 0.63). CONCLUSION: We found no differences in IGF1 status in CFS patients compared to healthy matched neighborhood controls. In addition, the results of this clinical trial do not demonstrate any benefit of Acclydine over placebo in the treatment of CFS

    On the verge of Umdeutung in Minnesota: Van Vleck and the correspondence principle (Part One)

    Get PDF
    In October 1924, the Physical Review, a relatively minor journal at the time, published a remarkable two-part paper by John H. Van Vleck, working in virtual isolation at the University of Minnesota. Van Vleck combined advanced techniques of classical mechanics with Bohr's correspondence principle and Einstein's quantum theory of radiation to find quantum analogues of classical expressions for the emission, absorption, and dispersion of radiation. For modern readers Van Vleck's paper is much easier to follow than the famous paper by Kramers and Heisenberg on dispersion theory, which covers similar terrain and is widely credited to have led directly to Heisenberg's "Umdeutung" paper. This makes Van Vleck's paper extremely valuable for the reconstruction of the genesis of matrix mechanics. It also makes it tempting to ask why Van Vleck did not take the next step and develop matrix mechanics himself.Comment: 82 page

    A gene signature for post-infectious chronic fatigue syndrome

    Get PDF
    Background: At present, there are no clinically reliable disease markers for chronic fatigue syndrome. DNA chip microarray technology provides a method for examining the differential expression of mRNA from a large number of genes. Our hypothesis was that a gene expression signature, generated by microarray assays, could help identify genes which are dysregulated in patients with post-infectious CFS and so help identify biomarkers for the condition. Methods: Human genome-wide Affymetrix GeneChip arrays (39,000 transcripts derived from 33,000 gene sequences) were used to compare the levels of gene expression in the peripheral blood mononuclear cells of male patients with post-infectious chronic fatigue (n = 8) and male healthy control subjects (n = 7). Results: Patients and healthy subjects differed significantly in the level of expression of 366 genes. Analysis of the differentially expressed genes indicated functional implications in immune modulation, oxidative stress and apoptosis. Prototype biomarkers were identified on the basis of differential levels of gene expression and possible biological significance Conclusion: Differential expression of key genes identified in this study offer an insight into the possible mechanism of chronic fatigue following infection. The representative biomarkers identified in this research appear promising as potential biomarkers for diagnosis and treatment

    Wishing for deburdening through a sustainable control after bariatric surgery

    Get PDF
    The aim of this study was an in-depth investigation of the change process experienced by patients undergoing bariatric surgery. A prospective interview study was performed prior to as well as 1 and 2 years after surgery. Data analyses of the transcribed interviews were performed by means of the Grounded Theory method. A core category was identified: Wishing for deburdening through a sustainable control over eating and weight, comprising three related categories: hoping for deburdening and control through surgery, feeling deburdened and practising control through physical restriction, and feeling deburdened and trying to maintain control by own willpower. Before surgery, the participants experienced little or no control in relation to food and eating and hoped that the bariatric procedure would be the first brick in the building of a foundation that would lead to control in this area. The control thus achieved in turn affected the participants' relationship to themselves, their roles in society, and the family as well as to health care. One year after surgery they reported established routines regarding eating as well as higher self-esteem due to weight loss. In family and society they set limits and in relation to health care staff they felt their concern and reported satisfaction with the surgery. After 2 years, fear of weight gain resurfaced and their self-image was modified to be more realistic. They were no longer totally self-confident about their condition, but realised that maintaining control was a matter of struggle to obtaining a foundation of sustainable control. Between 1 and 2 years after surgery, the physical control mechanism over eating habits started to more or less fade for all participants. An implication is that when this occurs, health care professionals need to provide interventions that help to maintain the weight loss in order to achieve a good long-term outcome

    A local glucose-and oxygen concentration-based insulin secretion model for pancreatic islets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because insulin is the main regulator of glucose homeostasis, quantitative models describing the dynamics of glucose-induced insulin secretion are of obvious interest. Here, a computational model is introduced that focuses not on organism-level concentrations, but on the quantitative modeling of local, cellular-level glucose-insulin dynamics by incorporating the detailed spatial distribution of the concentrations of interest within isolated avascular pancreatic islets.</p> <p>Methods</p> <p>All nutrient consumption and hormone release rates were assumed to follow Hill-type sigmoid dependences on local concentrations. Insulin secretion rates depend on both the glucose concentration and its time-gradient, resulting in second-and first-phase responses, respectively. Since hypoxia may also be an important limiting factor in avascular islets, oxygen and cell viability considerations were also built in by incorporating and extending our previous islet cell oxygen consumption model. A finite element method (FEM) framework is used to combine reactive rates with mass transport by convection and diffusion as well as fluid-mechanics.</p> <p>Results</p> <p>The model was calibrated using experimental results from dynamic glucose-stimulated insulin release (GSIR) perifusion studies with isolated islets. Further optimization is still needed, but calculated insulin responses to stepwise increments in the incoming glucose concentration are in good agreement with existing experimental insulin release data characterizing glucose and oxygen dependence. The model makes possible the detailed description of the intraislet spatial distributions of insulin, glucose, and oxygen levels. In agreement with recent observations, modeling also suggests that smaller islets perform better when transplanted and/or encapsulated.</p> <p>Conclusions</p> <p>An insulin secretion model was implemented by coupling local consumption and release rates to calculations of the spatial distributions of all species of interest. The resulting glucose-insulin control system fits in the general framework of a sigmoid proportional-integral-derivative controller, a generalized PID controller, more suitable for biological systems, which are always nonlinear due to the maximum response being limited. Because of the general framework of the implementation, simulations can be carried out for arbitrary geometries including cultured, perifused, transplanted, and encapsulated islets.</p

    Goettingen Minipigs (GMP): Comparison of Two Different Models for Inducing Diabetes

    Get PDF
    Purpose: Preclinical experiments on large animals are indispensable for evaluating the effectiveness of diabetes therapies. Miniature swine are well suited for such studies due to their physiological and pathophysiological responses. Methods: We compare two methods for inducing diabetes in Goettingen minipigs (GMP), in five with the beta cell toxin streptozotocin (STZ) and in five other GMP by total pancreatectomy (PE). Glucose homeostasis was assessed with the intravenous glucose-tolerance test (IVGTT) and continual monitoring of interstitial glucose levels. At conclusion of the observation period, the pancreata were examined histologically. Three non-diabetic GMP served as control group. Results: The IVGTT revealed markedly diabetic profiles in both GMP groups. STZ-GMP were found to harbor residual C-peptides and scattered insulin-positive cells in the pancreas. PE-GMP survived the total pancreatectomy only with intensive postoperative care. Conclusions: Although both methods reliably induced diabetes in GMP, the PE-GMP clearly had more health problems and required a greater expenditure of time and resources. The PE-GMP model, however, was better at eliminating endogenous insulin and C-peptide than the STZ-GMP model
    corecore