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Abstract

In October 1924, The Physical Review, a relatively minor journal at the time, pub-
lished a remarkable two-part paper by John H. Van Vleck, working in virtual isola-
tion at the University of Minnesota. Van Vleck used Bohr’s correspondence principle
and Einstein’s quantum theory of radiation to find quantum formulae for the emis-
sion, absorption, and dispersion of radiation. The paper is similar but in many ways
superior to the well-known paper by Kramers and Heisenberg published the fol-
lowing year that is widely credited to have led directly to Heisenberg’s Umdeutung
paper. As such, it clearly shows how strongly the discovery of matrix mechanics
depended on earlier work on the application of the correspondence principle to the
interaction of matter and radiation.

Key words: Dispersion theory, John H. Van Vleck, Correspondence Principle,
Bohr-Kramers-Slater (BKS) theory, Virtual oscillators, Canonical perturbation
theory, Matrix mechanics

1 Americans and quantum theory in the early 1920s

“[A]lthough we did not start the orgy of quantum mechanics, our young the-
orists joined it promptly” (Van Vleck, 1964, 24). 1 This is how John Has-
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1 Quoted and discussed in (Coben, 1971, 456)
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brouck Van Vleck (1899–1980), our main protagonist, 2 described the Amer-
ican participation in the quantum revolution of the mid-1920s for an audi-
ence in Cleveland in 1963. Van Vleck spoke as the first recipient of an award
named for America’s first Nobel prize winner in physics, Albert A. Michel-
son (1825–1931). Van Vleck was fond of the “orgy”-metaphor, which he had
picked up from the German-American physicist Ralph Kronig (1904–1995).
In his Michelson address he mentioned how he had used it off-handedly a few
years earlier during a press conference at Harvard on Russian contributions to
science, only to find himself quoted in a newspaper as saying that there had
been a “Russian orgy in theoretical physics” (ibid.). He was selling himself and
his countrymen short, however, by characterizing the American contribution
to the quantum revolution as simply a matter of joining an orgy started by
the Europeans and in full swing by the time the Americans arrived on the
scene.

Eight years later, Van Vleck, in fact, took exception to what sounds like a
similar characterization given by another leading American physicist of his
generation, Isidor I. Rabi (1898–1988). Van Vleck (1971, 7) quoted a comment
that Rabi made in a TV documentary about Enrico Fermi (1901–1954):

We had produced a large number of people who had been brought up to
a certain level, then needed some help, some leadership to get over the
hump. Once they were over the hump they were tremendous. People of my
generation brought them over the hump, largely from attitudes, tastes, and
developments which we had learned in Europe.

As Thomas S. Kuhn and others have emphasized, Rabi’s point was that Amer-
ican physicists returning from Europe rather than European émigrés were
mainly responsible for the coming of age of American physics. 3 This issue
has been hotly debated in the history of physics literature. 4 Our study of
early American contributions to quantum theory supports the observation by

2 For an (intellectual) biography of Van Vleck, known to his colleagues simply as
‘Van’, see the superb dissertation of Fred Fellows (1985) and a biographical mem-
oir by Phil Anderson (1987), one of Van Vleck’s many graduate students. Anderson
shared the 1977 Nobel prize with Van Vleck and Sir Nevill Mott “for their fundamen-
tal theoretical investigations of the electronic structure of magnetic and disordered
systems.” Van Vleck won the prize for work begun in the early 1930s that earned
him the title of “father of modern magnetism.”
3 See p. 20 of the transcript of the last of five sessions of Kuhn’s interview with
George E. Uhlenbeck (1900–1988) for the Archive for the History of Quantum
Physics (AHQP) on December 9, 1963.
4 For a concise summary and detailed references to the older literature, see (Moyer,
1985, 171–173). Whereas our focus will be on American contributions to atomic
physics, Assmus (1992, 1999) has argued that American theoretical physics came of
age in molecular physics (cf. note 28 below).
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Sam Schweber (1986, 58) that in the 1930s theoretical physics was “already a
thriving enterprise in the United States. The refugee scientists resonated with
and reinforced American strength and methods: they did not create them.”

Commenting on Rabi’s remark, Van Vleck (1971, 6) reiterated the point of
his Michelson address that “quantum mechanics was a basically European
discovery,” 5 but, he added, “there has been too much of an impression that
American physicists, even in the application of quantum mechanics, were ef-
fective only because they had the aid of European physicists, either by going
to Europe, or because of their migration to America.” Van Vleck, who was
proud to be a tenth-generation American, 6 received his entire education in
the United States. He hardly had any contact with European physicists be-
fore 1925, although he did meet a few on a trip to Europe with his parents
in the summer of 1923. In Copenhagen, he called on Niels Bohr (1885–1962),
who suggested that he get in touch with Hendrik A. (Hans) Kramers (1894–
1952), Bohr’s right-hand man and one of the central characters in our story. 7

Kramers was not in Denmark at the time but in his native Holland. Decades
later, when he received the Lorentz medal from the Royal Dutch Academy
of Sciences, Van Vleck recalled how he had searched for Kramers all over the
Netherlands. After he had finally tracked him down—it can no longer be es-
tablished whether this was in Bergen aan Zee or in Schoorl—the two men went
for a long walk in the dunes along the North-Sea coast: “This was the begin-
ning of a friendship that lasted until his passing in 1952” (Van Vleck, 1974, 9).
Unfortunately, Van Vleck does not tell us what he and Kramers talked about.

1.1 Education

Van Vleck learned the old quantum theory of Bohr and Arnold Sommerfeld
(1868–1951) at Harvard as one of the first students to take the new course on
quantum theory offered by Edwin C. Kemble (1889–1984), the first American
physicist to have written a predominantly theoretical quantum dissertation.
Kemble’s course roughly followed (Sommerfeld, 1919), the bible of the old
quantum theory. Van Vleck supplemented his studies by reading (Bohr, 1918)
and (Kramers, 1919) (Fellows, 1985, 17). Van Vleck was part of a remarkable
cohort of young American quantum theorists, which included Gregory Breit

5 In 1928, he had characterized it as “the result of the reaction of mind on mind
among European talent in theoretical physics” (Van Vleck, 1928, 467).
6 He could trace his ancestry back to the fifteenth century, to a certain Johan van
Vleeck of Maastricht. One of the latter’s descendants, Tielman van Vleeck (or von
Fleck), left Bremen for New Amsterdam in 1658 (Fellows, 1985, 5–6)
7 See p. 14 of the transcript of the first of two sessions of Kuhn’s AHQP interview
with Van Vleck in October 1963.
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(1899–1981), 8 John C. Slater (1900–1976), 9 Harold C. Urey (1893–1981), and
David M. Dennison (1900–1976). 10 Just as Van Vleck was the first to write a
purely theoretical dissertation at Harvard in 1922, Dennison was the first to
do so at the University of Michigan in 1924. 11

The older generation—men such as Michelson and Robert A. Millikan (1868–
1953)—recognized that the United States badly needed to catch up with Eu-
rope in quantum physics. The Americans were already doing first-rate exper-
imental work. One need only think of Millikan (1916) verifying the formula
for the photo-electric effect (Stuewer, forthcoming) or of Arthur H. Compton

8 Breit was born in Russia and came to the United States in 1915. “John Wheeler
relates a story told to him by Lubov [Gregory’s sister] that she and Gregory were
vacationing on the sea when the call to leave Russia came, and they ‘came as
they were.’ For Gregory this meant dressed in a sailor suit with short pants; he
was still wearing it when he enrolled in Johns Hopkins (at age sixteen!). Wheeler
attributes some of Gregory’s subsequent reticence to the ragging he took at the
hand of his classmates for his dress” (Hull, 1998, 29–30). In the run-up to the
Manhattan Project, Breit served as “Coordinator of Rapid Rupture,” but resigned
in May 1942 over security concerns bordering on paranoia (Goodchild, 1980, 48). He
was replaced by J. Robert Oppenheimer (1904–1967). True to form, Breit declined
to be interviewed for the AHQP (see the correspondence between Breit and Kuhn
included in the folder on Breit in the AHQP). In a memorandum dated April 8,
1964 (included in the same folder), Kuhn describes how they met for lunch, but did
not get beyond “casual reminiscences.” Kuhn ends on a positively irritated note:
“we broke off amicably but with zero achievement to report for the project.”
9 On Slater, see, e.g., (Schweber, 1990).
10 Reminiscences about the early days of quantum physics in the United States can
be found in (Van Vleck, 1964, 1971) and in (Slater, 1968, 1973, 1975). It is also an
important topic of conversation in Kuhn’s AHQP interviews with Van Vleck, Slater,
Dennison, and Kemble. These interviews need to be handled with care. In the case of
Slater and Van Vleck, one can say, roughly speaking, that the former had a tendency
to exaggerate the importance of American contributions, especially his own, while
the latter tended to downplay their importance. The interviews with Slater and
Van Vleck and part of the interview with Kemble all took place in October 1963.
Van Vleck was present at the first session of the interview with Slater and at the
second session of the interview with Kemble. It was only natural for Van Vleck to
get involved in Kuhn’s project. As a young physicist right after World War II, Kuhn
had worked with Van Vleck (Anderson, 1987, 518), a collaboration that resulted in
a joint paper (Kuhn and Van Vleck, 1950).
11 See p. 10 of the transcript of the first of three sessions of Kuhn’s AHQP interview
with Dennison in January 1964. Dennison could take advantage of the presence of
Oskar Klein (1894–1977), who was a visiting faculty member in the physics depart-
ment in Michigan from 1923 to 1925 (Sopka, 1988, 321). This is where Klein came
up with what is now known as the Klein-Gordon equation; it is also where he made
his contribution to what is now known as the Kaluza-Klein theory (see p. 13 of the
transcript of the interview with Uhlenbeck cited in note 3).
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(1892–1962) (Compton, 1923) producing strong evidence for the underlying
hypothesis of light quanta (Stuewer, 1975). Theory, however, was seriously
lagging behind. In 1963, Van Vleck’s teacher, Ted Kemble, recalled:

[T]he only theoretical physicists in the country at that time were really men
on whom the load of teaching all the mathematical physics courses lay, and
they all spent their time teaching. It wasn’t, as I remember, a constructive
occupation. 12

When quantum theory arrived on the scene, some experimentalists actually
tried their hands at teaching it themselves (Coben, 1971, 444). In this climate,
young American physicists with a knack for theory became a hot commodity.
They received fellowships to learn the theory at the feet of the masters in
Europe and offers of faculty positions straight out of graduate school with
provisions protecting them from the drudgery of undergraduate teaching so
that they could concentrate on advanced graduate courses and research. 13

1.2 Postdocs and faculty positions

The careers of the young theorists listed above amply illustrate the new op-
portunities in the mid-1920s. Slater went to Europe on a Sheldon fellow-
ship from Harvard and spent the first half of 1924 with Bohr and Kramers
in Copenhagen. During this period, Urey and Frank C. Hoyt (1898–1977)
were in Copenhagen as well, Urey on a small fellowship from the American-
Scandinavian Foundation, Hoyt on a more generous National Research Council
(NRC) fellowship paid for by the Rockefeller foundation. 14 Among the visi-
tors the Americans got to meet in Bohr’s institute were Werner Heisenberg
(1901–1976) and Wolfgang Pauli (1900–1958). 15 Hoyt, a promising student

12 P. 4 of the transcript of the second session of the AHQP interview with Kemble
on October 1, 1963. See also p. 10 of the transcript of the first session on May
11, 1962. Kemble allowed one exception, Arthur Gordon Webster (1863–1923), but
Webster, Kemble said, “just couldn’t keep up with what was going on when the
quantum theory began. I always understood that the reason he killed himself was
simply because he discovered that suddenly physics had gone off in a new direction
and he was unable to follow, and he couldn’t bear to take a seat in the back and be
silent” (p. 12 of the transcript of the first session).
13 For further discussion of quantum physics in America before the mid-30s, see
(Coben, 1971), (Seidel, 1978), (Kevles, 1978, 168–169), (Weart, 1979), (Schweber,
1986), (Holton, 1988), and, especially, (Sopka, 1988).
14 See (Robertson, 1979, 157), (Sopka, 1988, 71, 97), and Slater to Van Vleck, July
27, 1924 (AHQP)
15 In the letter to Van Vleck cited in the preceding note, Slater painted an unflatter-
ing portrait of his illustrious contemporaries: “Heisenberg is a very nice red haired
unassuming young chap, talks a little English, and everybody likes him. Pauli is
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who never reached the level of distinction of the cohort immediately follow-
ing him, 16 was in Copenhagen for almost two years, from October 1922 to
September 1924, Urey for less than one, from September 1923 to June 1924,
and Slater only for a few months, from December 1923 to April 1924. In Oc-
tober 1924, Dennison arrived in Copenhagen, on an International Education
Board (IEB) fellowship, another fellowship paid for by the Rockefeller Foun-
dation. 17 The state of quantum theory in America was already beginning to
change at that point. Like Hoyt, Dennison was awarded a NRC fellowship, but
was told that he could only spend the money at an American institution. 18

Van Vleck and Slater, who both started graduate school at Harvard in 1920
(Van Vleck in February, Slater in September) and lived in the same dormi-
tory, 19 at one point discussed going to Copenhagen together upon completion
of their Ph.D. degrees in 1923. In the end, Van Vleck decided to accept the
offer of an assistant professorship at the University of Minnesota, where he
started in the fall of 1923. When the university hired Van Vleck it also hired
Breit so that its new recruits would not feel isolated. 20 Breit and Van Vleck
replaced W. F. G. Swann (1884-1962) who had left for Chicago, taking his
promising graduate student Ernest O. Lawrence (1901–1958) with him. As
Van Vleck (1971, 6) notes wryly: “A common unwitting remark of the lady
next to me at a dinner party was “Wasn’t it too bad Minnesota lost Swann—
it took two men to replace him!”” Just as Minnesota hired both Breit and

as different as he could be, a big fat Jew, with a very good opinion of himself and
a great liking to hear himself talk. Still, he is a good natured and accomodating
person, and well liked.”
16 He wrote several papers on applications of Bohr’s correspondence principle (Hoyt,
1923, 1924, 1925a,b). The first two are cited in (Van Vleck, 1924b, 334) and all
but the second are cited in (Van Vleck, 1926a, 124, 146). (Ladenburg and Reiche,
1924, 672) cites the second paper, referring to the author as “W. C. Hoyt.” Hoyt
also translated Bohr’s Nobel lecture into English (Bohr, 1923a). Hoyt ended up
making a career in weapons research rather than in academic physics. After the
war, he worked at Argonne National Laboratory, Los Alamos, and Lockheed. John
L. Heilbron interviewed Hoyt for the AHQP but he did not remember much of the
early days of quantum theory.
17 Bohr arranged for one of these fellowships to pay for Heisenberg’s visit to Copen-
hagen in the fall of 1924 (Cassidy, 1991, 180, 183). See also the acknowledgment in
(Heisenberg, 1925b, 860).
18 See p. 12 of the transcript of the first of three sessions of the interview with
Dennison cited in note 11. In 1923, the NRC had likewise rejected the proposal of
Robert S. Mulliken (1896–1987) to go work with Ernest Rutherford (1871–1937) in
Cambridge. Mulliken became a NRC research fellow at Harvard instead (Assmus,
1992, 23).
19 See Van Vleck, 1920–1930. The first ten years of John Slater’s scientific career.
Unpublished manuscript, American Institute of Physics (AIP), p. 2.
20 See p. 14 of the transcript cited in note 7.
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Van Vleck in 1923, the University of Michigan hired not one but two students
of Paul Ehrenfest (1880–1933) in 1927, Uhlenbeck and Samuel A. Goudsmit
(1902–1978) (Coben, 1971, 460). 21 In addition Michigan hired Dennison, its
own alumnus, upon his return from Copenhagen. Ann Arbor thus became an
important center for quantum theory, especially in molecular physics (Assmus,
1992, 4, 26, 30)

While Uhlenbeck and Goudsmit essentially remained in Ann Arbor for the
rest of their careers, neither Breit nor Van Vleck stayed long in Minneapolis.
Breit left for the Carnegie Institution of Washington after only one year, Van
Vleck for the University of Wisconsin, his alma mater, after five. Van Vleck
agonized over the decision to leave Minnesota, where he had been promoted
to associate professor in June 1926 and, only a year later, to full professor
(Fellows, 1985, Ch. VII). Moreover, his wife, Abigail Pearson (1900–1989),
had strong ties to Minneapolis. 22

To replace Van Vleck, Minnesota made the irresistible offer of a full profes-
sorship to the young Edward U. Condon (1902–1974). Minnesota had offered
Condon an assistant professorship the year before. At that point, Condon had
received six such offers and had decided on Princeton (Condon, 1973, 321).
His laconic response to this embarrassment of riches: “The market conditions
for young theoretical physicists continues [sic] to surprise me” (Coben, 1971,
463). Before his first Minnesota winter as a full professor, Condon already
regretted leaving New Jersey. He returned to Princeton the following year.
Condon, Rabi, and Oppenheimer 23 were the leaders of the cohort of Ameri-
can quantum theorists graduating right after the quantum revolution of 1925.
The cohort most relevant to our story graduated right before that watershed.

21 See also (Sopka, 1988, 149) and the AHQP interview with Dennison mentioned
in note 11. The recruiting was done by Walter F. Colby (1880–1970) and Harrison
M. Randall (1870–1969).
22 This is how Anderson (1987, 525) characterized the couple: “They were insepa-
rable, and her wit was an excellent foil to his, slightly more personal and acerbic,
occasionally expressing the impatience with people that Van never permitted him-
self.” Abigail made a generous donation to the University of Minnesota to support
the Abigail and John van Vleck Lecture Series. Phil Anderson gave the inaugural
lecture in 1983 and the series has brought several Nobel prize winners to Minneapo-
lis since. The main auditorium in the building currently housing the University of
Minnesota physics department is also named after the couple.
23 Oppenheimer enrolled as an undergraduate at Harvard in 1922, two years after
Slater and Van Vleck started graduate school there.
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1.3 The Physical Review

It was during Van Vleck’s tenure in Minnesota that his senior colleague John T.
Tate (1889–1950) took over as editor-in-chief of The Physical Review (Sopka,
1988, 142–145, 203, note 11). Van Vleck (1971, 7–8) stressed the importance of
this event, describing it as “another revolution” in the “middle of the quantum
revolution.” Van Vleck was very appreciative of Tate’s role: “He published my
papers very promptly, and also often let me see manuscripts of submitted
papers, usually to referee.” Thanks in no small measure to Van Vleck and
other young whippersnappers in quantum theory, Tate turned what had been
a lack-luster publication into the prestigious journal it still is today. 24 Van
Vleck (1964, 22, 24) recalled the transformation:

The Physical Review was only so-so, especially in theory, and in 1922 I was
greatly pleased that my doctor’s thesis [Van Vleck, 1922] was accepted for
publication by the Philosophical Magazine in England . . . By 1930 or so, the
relative standings of The Physical Review and Philosophical Magazine were
interchanged . . . Prompt publication, beginning in 1929, of “Letters to the
Editor” in The Physical Review . . . obviated the necessity of sending notes
to Nature, a practice previously followed by our more eager colleagues [see,
e.g., (Breit, 1924b), (Slater, 1924, 1925c)].

Van Vleck’s impression is corroborated by two foreign-born theorists who made
their careers in the United States, Rabi and Uhlenbeck (Coben, 1971, 456).
Rabi was born in Galicia 25 but moved to New York City as an infant. Rabi
liked to tell the story that, when he returned to Europe to study quantum
theory in Germany in 1927, he discovered that The Physical Review “was so
lowly regarded that the University of Göttingen waited until the end of the
year and ordered all twelve monthly issues at once to save postage” (ibid.).
On other occasions, Rabi told this story about Hamburg University (Rigden,
1987, 4). He told Jeremy Bernstein (2004, 28) that “in Hamburg so little was
thought of the journal . . . that the librarian uncrated the issues only once a
year.” In a talk about Condon, Rabi (1975, 7) elaborated on the mediocrity
of The Physical Review:

it was not a very exciting journal even though I published my dissertation in
it. And we felt this very keenly. Here was the United States, a vast and rich
country but on a rather less than modest level in its contribution to physics,
at least per capita. And we resolved that we would change the situation.

24 Tate edited the journal from 1926 to 1950. It is largely in recognition of this
achievement that the current Minnesota physics building is named after Tate.
25 Which makes him an Ostjude and not an “Ausjude” (whatever that may be) as
Bird and Sherwin (2005, 76) claim in a bizarre passage in their otherwise excellent
Oppenheimer biography.
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And I think we did. By 1937 the Physical Review was a leading journal in
the world.

Uhlenbeck remembered how as a student in Leyden he viewed The Physical
Review as “one of the funny journals just like the Japanese.” 26 His initial
reaction to the job offer from Michigan suggests that, at least at the time,
his disdain for American physics journals extended to the country as a whole:
“If it had been Egypt or somewhere like that, I would have gone right away,
or China, or even India, I always wanted to go to exotic places [Uhlenbeck
was born in Batavia in the Dutch East Indies, now Jakarta, Indonesia]; but
America seemed terribly dull and uninteresting”(Coben, 1971, 460). 27

1.4 Van Vleck, the correspondence principle, and matrix mechanics

Given the disadvantage they started out with, American theorists in the early
1920s would have done well had they just absorbed the work of their Eu-
ropean counterparts and transmitted it to the next generation of American
students. They did considerably better than that. Even before the break-
through of Heisenberg (1925c) they started making important contributions
themselves. 28 Slater was one of the architects of the ill-fated but highly influ-

26 See p. 20 of the transcript cited in note 3.
27 In the AHQP interview with Uhlenbeck (see note 3), one finds no such disparaging
comments about America. In fact, Uhlenbeck talks about how he had reluctantly
agreed to return to the Netherlands in 1935 to replace Kramers, who had left Utrecht
for Leyden to become Ehrenfest’s successor after the latter’s suicide (see p. 9 of the
transcript cited in note 3). Uhlenbeck went back to Ann Arbor in 1939.
28 According to Alexi Assmus (1992, 8), “[a]tomic physics was shark invested waters
and was to be avoided; U.S. physicists would flourish and mature in the calmer and
safer tidepools of molecular physics” (see also Assmus, 1999, 187). She sees the early
contributions of Slater and Van Vleck to atomic physics, which will be the focus of
our study, as exceptions to this rule: “Van Vleck and Slater viewed themselves as
the younger generation, as central figures in the “coming of age” of U.S. physics.
They had been given the knowledge that Kemble and his generation could provide
and felt themselves capable of pushing into areas where the physics community in
the United States had not dared to venture. Still, after experiences had muted their
youthful exuberance, they turned to the by-then traditional problems of American
quantum physics problems that addressed the building up of matter rather than
its deconstruction” (Assmus, 1992, 22). We hope to show that American work in
atomic physics was significantly more important—if not in quantity, then at least in
quality—than these remarks suggest. At the same time, Assmus is probably right
that the Americans contributed more to molecular than to atomic physics. This
would fit with the thesis of Schweber (1990, 398–406) that “Americans contributed
most significantly to the development of quantum mechanics in quantum chemistry.”
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ential Bohr-Kramers-Slater (BKS) theory (Bohr, Kramers, and Slater, 1924)
(see sec. 2.2). Less well-known is the contribution of Van Vleck. In 1924 he
published a remarkable two-part article in The Physical Review on the emis-
sion, absorption, and dispersion of radiation (Van Vleck, 1924b,c), in which he
gave quantum analogues of classical relations guided by Bohr’s correspondence
principle (Bohr, 1918) and the quantum theory of radiation of Albert Einstein
(1879–1955) (Einstein, 1916a,b, 1917). 29 At the suggestion of Pascual Jordan
(1902–1980), Bartel Leendert van der Waerden (1903–1996) included the quan-
tum part of the paper (Van Vleck, 1924b) in his well-known anthology on the
development of matrix mechanics (Van der Waerden, 1968, preface). 30 Van
Vleck told Kuhn in his AHQP interview that Born and Jordan, Born’s assis-
tant at the time, were studying this paper of his when the paper by Heisenberg
(1925c) introducing matrix mechanics arrived in Göttingen. 31 This is some-
thing of an embellishment. (Born and Jordan, 1925a), largely inspired by (Van
Vleck, 1924b,c), 32 was actually submitted to Zeitschrift für Physik on June
11, 1925, a few weeks before Heisenberg’s breakthrough (Cassidy, 1991, 198).

Incidentally, Van Vleck (1971, 7) pointed to these pre-1925 contributions by

29 Originally, Van Vleck’s paper was to have three parts. Van Vleck did not finish
the third part at the time. As he explained in a letter to Max Born (1882–1970)
on November 30, 1924 (AHQP): “Part III which is not yet ready relates to classical
black body radiation rather than quantum theory.” It was only toward the end of
his life that he returned to the masterpiece of his youth. Three years before he
died he published a paper, co-authored with D. L. Huber, that can be seen as a
substitute for part III. As the authors explain: “Part III was to be concerned with
the equilibrium between absorption and emission under the Rayleigh-Jeans law. It
was never written up for publication [. . . ] The idea occurred to him [i.e., Van Vleck]
to use the 50th anniversary of Parts I and II as the date for publishing a paper which
would start with Part III and might even bear its title. Although he did not succeed
in meeting the deadline, it still provided a partial motivation for collaborating on
the present article” (Van Vleck and Huber, 1977, 939).
30 See also (Sopka, 1988, 110–111).
31 See p. 24 of the transcript cited in note 7.
32 See Jordan to van der Waerden, December 1, 1961 (quoted in Van der Waer-
den, 1968, 17), and (Jordan, 1973). We quote from the latter: “Van Vleck gave a
derivation of Einstein’s laws of the relation between the probabilities of spontaneous
emission and positive and negative absorption. This result of Einstein’s had been
looked upon for a long time in a sceptical manner by Niels Bohr; now it was highly
interesting to see, just how from Bohr’s preferred way of thinking, a derivation
of Einstein’s law could be given. Born and I performed a simplified mathematical
derivation of the results of Van Vleck. Our article on this topic [Born and Jordan
1925a] did not contain anything new apart from our simpler form of the calculation,
but by studying this topic we both came to a more intimate understanding of Bohr’s
leading ideas” (Jordan, 1973, 294, our emphasis). See secs. 3.2, 3.3 and 4.1 below
for discussion of Van Vleck’s correspondence principles for emission and absorption.
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Slater and himself to demonstrate the inaccuracy of Rabi’s characterization
of American work in quantum theory quoted earlier. Even at the time, Van
Vleck had felt that the Europeans had not given the work of the Americans
its due. He complained about this in a letter to Born of October 19, 1925, a
draft of which can be found in the AHQP. The letter gives some impression
of the breadth of the early American contributions to atomic physics, not just
by Van Vleck himself but also by his teacher Kemble:

I am writing this letter regarding some of the references to my work in your
articles. I fully realize that an occasional error in a reference is unavoidable,
for I have made such mistakes myself. I would gladly overlook any one error,
but inasmuch as there are two or three instances, it is perhaps worth while to
call them to your attention. On p. 332 of your treatise on “Atommechanik”
[Born, 1925], the reference to my work on the crossed-orbit model of the
normal helium atom is given as [Van Vleck, 1923]. This reference is only
to the abstract of some work on excited helium and the references to my
articles on normal helium are [Van Vleck, 1922a] (abstract of a paper de-
livered before the American Physical Society in Dec. 1921), and especially
[Van Vleck, 1922b], where the details of the computations are given. This
incorrect reference to a paper on another subject published a year later
makes it appear as though my computation was published simultaneously
or later than that of Kramer[s] [(Kramers, 1923), cited in the same footnote
as (Van Vleck, 1923) in (Born, 1925, 332)]. The same error is also found
in your article [Born, 1924b] on perturbation theory . . . Also in your book
on Atommechanik [(Born, 1925, 332), the sentence with the footnote refer-
ring to (Kramers, 1923) and (Van Vleck, 1923)] you say “das raumliche [sic]
Modell ist ebenfalls von Bohr vorgeschlagen” [the spatial model has also
been proposed by Bohr], without any mention of the name Kemble, who
proposed the crossed-orbit model in [Kemble, 1921] before [Bohr, 1922].

Van Vleck then comes to the most egregious case, Born’s failure to properly
acknowledge his two-part paper on the correspondence principle in (Born and
Jordan, 1925a). Especially in view of Jordan’s later remarks on the importance
of Van Vleck’s work for their own, which we quoted above (see note 32),
the authors were very stingy in giving Van Vleck credit. Of course, Jordan
probably knew about Van Vleck’s complaint to Born on this score and may
have wanted to make up for their lack of generosity. Van Vleck wrote:

I was much interested in your recent article on the Quantization of Aperiodic
Systems, in which you show that the method of Fourier integrals gives many
results obtained by “Niessen and Van Vleck” [Born and Jordan, 1925a, 486],
placing my name after Niessen’s [Kare Frederick Niessen (1895–1967)], even
though his paper [Niessen, 1924] did not appear until Dec. 1924 while the
details of my computations were given in the Physical Review for Oct.
1924 [Van Vleck, 1924b, 1924c] and a preliminary notice published in the
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Journal of the Optical Society for July 1924 [Van Vleck, 1924a], before
Niessen’s article was even submitted for publication. I think you wrote me
inquiring about my work shortly after the appearance of this preliminary
note, and so you must be aware that it was the first to appear . . . inasmuch
as Niessen’s discussion is somewhat less general than my own, it seems to
me that it scarcely merits being listed first (Van Vleck to Born, October 19,
1925 [AHQP]).

Writing from Cambridge, Massachusetts, where he was visiting MIT, Born
apologized to Van Vleck on November 25, 1925 (AHQP). 33 Born had indeed
written to Van Vleck concerning (Van Vleck, 1924a), albeit a little later than
the latter remembered. On October 24, 1924. Born had written:

While we already came close to one another in the calculation of the Helium
atom, I see from your paper “A Correspondence Principle for Absorption”
[Van Vleck, 1924a] that we now approach each other very closely with our
trains of thought . . . I am sending you my paper “On Quantum Mechanics”
[Born, 1924], which pursues a goal similar to yours.

This goes to show—Rabi’s anecdotal evidence to the contrary notwithstanding—
that at least some European physicists did keep up with theoretical work
published in American journals, the Journal of the Optical Society of America
in this case, even if they were not particularly generous acknowledging the
importance of such work in print.

Van Vleck was justifiably proud of his two-part paper of 1924 on the corre-
spondence principle. As in the case of the better-known paper by Kramers and
Heisenberg (1925), which was completed a few months later, covers much the
same terrain and exploits similar methods, one is struck in hindsight by how
close Van Vleck came to anticipating matrix mechanics. 34 In his 1963 inter-
view for the AHQP, Kuhn reminded Van Vleck of a remark two years earlier
to the effect that if he had been “a little more perceptive” he “might have
taken off from that paper to do what Heisenberg did.” “That’s true,” Van
Vleck conceded, but added with characteristic modesty: “Perhaps I should

33 Born had been less generous in the case of a similar complaint from America a
few years earlier (see note 57 below). When Van Vleck found out that Born was
in the US, he tried to arrange for Born to visit Minneapolis, but by the time the
administration of the University of Minnesota got its act together, Born could no
longer fit a trip to Minnesota in his schedule (see Van Vleck to Born, January 8,
1926 [draft] and Born to Van Vleck, January 13, 1926 [AHQP]).
34 Max Dresden (1987, 275), one of Kramers’ student and his biographer, calls
(Kramers and Heisenberg, 1925) “the direct, immediate, and exclusive precursor
to the Heisenberg paper on matrix mechanics.” Martin J. Klein (1970, 31) is more
restrained but does say that “this work was the immediate predecessor of Heisen-
berg’s new quantum mechanics.”
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say considerably more perceptive.” 35 In the biographical information he sup-
plied for the AHQP, Van Vleck noted: “In the two or three years after my
doctorate . . .my most significant paper was one on the correspondence princi-
ple for absorption . . . It was somewhat related to considerations based on the
correspondence principle that led Heisenberg to the discovery of quantum me-
chanics, but I did not have sufficient insight for this.” This modest assessment
is reflected in the discussion of the relation between Van Vleck’s work on the
correspondence principle and Heisenberg’s matrix mechanics by Van Vleck’s
biographer, Fred Fellows (1985, 74–81). Phil Anderson (1987, 506) is less re-
served: “This paper comes tantalizingly close to the kind of considerations
that led to Heisenberg’s matrix mechanics.”

Van Vleck did not pursue his own research any further in 1924 and instead
spent months writing—and, as he jokingly put it, being a “galley slave” (Fel-
lows, 1985, 100) of—a Bulletin for the NRC on the old quantum theory (Van
Vleck, 1926a). 36 With his masterful survey he would surely have rendered
a great service to the American physics community had it not been for the
quantum revolution of 1925–1926. Like Pauli’s Handbuch article (Pauli, 1926),
the Bulletin was, as Van Vleck (1971, 6) himself put it, “in a sense . . . obsolete
by the time it was off the press.” 37 One might well wonder what would have
happened, had Van Vleck continued to ponder the interaction between ra-
diation and matter and the correspondence principle instead of fulfilling his
duties as a newly minted member of the American physics community.

It is fair to say that Van Vleck—like Kramers, who added Heisenberg’s name
to (Kramers and Heisenberg, 1925) mainly as a courtesy (Dresden, 1987, 273–

35 See p. 24 of the transcript cited in note 7. Kuhn’s recollection is that Van Vleck’s
earlier remark was made during a meeting in Philadelphia, February 17, 1961, to
plan for the AHQP (Kuhn et al., 1967, p. vii–viii).
36 In the clause left out of the quotation in note 29 above, Van Vleck and Huber
(1977, 939) explain that the former never got around to writing the last part of his
trilogy, “because in 1925 the author was busy writing his book [Van Vleck, 1926a]
and of course the advent of quantum mechanics presented innumerable research
problems more timely than a purely classical investigation.” As Clayton Gearhart
has pointed out (private communication), Van Vleck also continued to worry about
the problem of the specific heat of molecular hydrogen.
37 For the reception of Van Vleck’s Bulletin, see (Fellows, 1985, 88-89). Van Vleck’s
Bulletin and Pauli’s Handbuch article were not the only treatises on the old quantum
theory that were out of date before the ink was dry. Books on atomic mechanics by
Born (1925) and Birtwistle (1926) suffered the same fate. George Birtwistle (1877–
1929) was a Cambridge theorist who never made good on his promise as senior
wrangler in the tripos, the famous Cambridge exam, in 1899. Two years after his
book on the old quantum theory, he published a book on the new quantum theory
(Birtwistle, 1928).
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274) 38 —came as close to matrix mechanics as, say, H. A. Lorentz (1853–1928)
and Henri Poincaré (1854–1912) came to special relativity. The comparison
seems particularly apt, as the breakthroughs of both Einstein and Heisenberg
consisted, to a large extent, in reinterpreting elements already present in the
work of their predecessors and discarding some of the scaffolding in that work.
Einstein reinterpreted Lorentz invariance and discarded the ether (Janssen,
2002). In the case of (Heisenberg, 1925c), the element of reinterpretation—
Umdeutung in the original German—is emphasized in the title of the paper.
Heisenberg’s starting point was to reinterpret the frequency and amplitude of
radiation accompanying transitions between stationary states in formulae for
emission, absorption, and dispersion and to discard the electron orbits rep-
resenting those states. 39 Heisenberg (1971, 63) himself famously compared
his first paper on matrix mechanics to Einstein’s first paper on special rel-
ativity. He argued that what his work had in common with Einstein’s was
its insistence on allowing only observable quantities into physical theory. As
already indicated above, the analogy between the breakthroughs of Einstein
and Heisenberg is considerably richer than that.

In the collective memory of the physics community, major discoveries under-
standably tend to get linked to singular events even though they are almost
invariably stretched over time. The “discovery” of the electron by J. J. Thom-
son (1856–1940) in 1897 or the “discovery” of the quantum of action by Max
Planck (1858–1947) in 1900 are well-known examples of this phenomenon.
Special relativity is another good example of a “discovery” that came to be
associated with a single flash of insight, Einstein’s recognition of the relativity
of simultaneity, and a single emblematic text, “On the electrodynamics of mov-
ing bodies” (Einstein, 1905). Much the same can be said about Heisenberg’s
famous trip to Helgoland in June 1925 to seek relief from his seasonal allergies
and the Umdeutung paper resulting from his epiphany on this barren island.
The way in which such stories become part of physics lore can be seen as a
manifestation of what Robert K. Merton (1968) has dubbed the “Matthew
effect,” the disproportional accrual of credit to individuals perceived (retroac-
tively in many cases) as leaders in the field. 40 We do, of course, recognize

38 See (Mehra and Rechenberg, 1982–2001, Vol. 2, 178–179) for Heisenberg’s side
of the story. These volumes by Mehra and Rechenberg bring together a wealth of
information and we shall frequently refer to them. However, they need to be used
with caution (Heilbron, 1985).
39 For a penetrating and exceptionally lucid analysis of Heisenberg’s Umdeutung
paper, see (Landsman, 2005).
40 The effect is named for the following passage from the Gospel According to St.
Matthew: “For unto everyone that hath shall be given, and he shall have in abun-
dance: but from him that hath not shall be taken away even that which he hath.”
Whereas Einstein was completely unknown in 1905, Heisenberg was already seen as
a leader in the field by 1925. As Uhlenbeck put it: “Everything which Heisenberg
did had to be taken seriously, because Heisenberg, Pauli, and, of course, Bohr were
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the singular importance of the contributions of Einstein to special relativity
and of Heisenberg to matrix mechanics. But there is no need to exaggerate
the extent of their achievements. They may have been the first to enter the
promised land, to use another admittedly strained biblical metaphor, but they
would never have laid eyes on it without some Moses-figure(s) leading the way.
It is in this sense that we feel that Van Vleck, in the passages quoted in the
beginning of this section, was selling himself short.

In his biography of Kramers, Dresden (1987) makes a convincing case that
Kramers deserves more credit for matrix mechanics than he received: “Kramers
certainly hoped and probably expected to be the single author of the Kramers-
Heisenberg paper. It is probably futile to speculate how the credit for the dis-
covery of matrix mechanics would have been distributed in that case. There
would be an indispensable preliminary paper by Kramers alone, followed by a
seminal paper by Heisenberg; this might well have altered the balance of recog-
nition” (Dresden, 1987, 252). Citing this passage, Dirk ter Haar (1998, 23),
like Dresden one of Kramers’ students, raises the question whether Kramers
would have shared Heisenberg’s 1932 Nobel prize in that case. In a curmud-
geonly review of Dresden’s book, however, Nico van Kampen, another one of
Kramers’ students, takes issue with the pattern of “near misses” that Dresden
(1987, 446–461) sees in Kramers’ career, the discovery of matrix mechanics
being one of them (Dresden, 1987, 285–288). Van Kampen (1988) asks: “Is
it necessary to explain that, once you have, with a lot of sweat and tears,
constructed a dispersion formula on the basis of the correspondence principle,
it is not possible to forget that background and that it takes a fresh mind to
take the next step?” Similar claims can be made and similar questions can be
raised in the case of Van Vleck, even though his work, unlike that of Kramers,
did not directly influence Heisenberg (though it did, as we have seen, influence
Born and Jordan).

Van Vleck’s contribution has receded even further into the background in the
history of quantum mechanics than Kramers’. Although the first (quantum)
part is included in (Van der Waerden, 1968), (Van Vleck, 1924b,c) is not dis-
cussed in any of the currently standard secondary sources on quantum disper-
sion theory and matrix mechanics, such as (Jammer, 1966), (Dresden, 1987),
or (Darrigol, 1992). Nor is it mentioned in Vol. 2 of (Mehra and Rechenberg,
1982–2001) on the discovery of matrix mechanics, although it is discussed
briefly in Vol. 1 (pp. 646–647) on the old quantum theory. 41 That he worked
in faraway Minnesota rather than in Copenhagen or Göttingen, we surmise, is
a major factor in this neglect of Van Vleck. Whatever its reasons, the neglect
is regrettable. Of the various papers in the general area of dispersion theory

the gods” (p. 14 of the transcript of the third session of the AHQP interview with
Uhlenbeck on April 5, 1962 [cf. note 3]).
41 It is also mentioned in (Van der Waerden and Rechenberg, 1985, 330–331).
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published in this period, including (Born, 1924) and (Kramers and Heisenberg,
1925), (Van Vleck, 1924b,c) stands out for its exceptionally clear exposition of
the mathematics and for the breadth and cogency of its physical arguments.
It is therefore much easier to see in (Van Vleck, 1924b,c) than in the later
better-known paper by Kramers and Heisenberg that matrix mechanics did
not come as a bolt out of the blue, but was the natural outgrowth of earlier
applications of the correspondence principle to the interaction of radiation and
matter.

Aitchison et al. (2004) have recently given a detailed reconstruction of the
notoriously opaque mathematics of (Heisenberg, 1925c). By way of motivat-
ing their enterprise, they quote the confession of Steven Weinberg (1992, 67)
that he has “never understood Heisenberg’s motivations for the mathemati-
cal steps in his paper” (our emphasis). Aitchison et al. (2004) clearly explain
the mathematical steps. The motivations for these steps, however, cannot be
understood, we submit, without recourse to the dispersion theory leading up
to his paper. And if we want to retrace Heisenberg’s steps on his sojourn to
Helgoland, Van Vleck may well be our best guide.
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2 Dispersion theory as the bridge between the old quantum theory
and matrix mechanics

From the point of view of modern quantum mechanics, the old quantum theory
of Bohr and Sommerfeld—especially in the hands of the latter and members
of his Munich school—was largely an elaborate attempt at damage control.
In classical physics the state of a physical system is represented by a point in
the phase space spanned by a system’s generalized coordinates and momenta
(qi, pi). All its properties are represented by functions f(qi, pi) defined on this
phase space. In quantum mechanics the state of a system is represented by a
ray in the Hilbert space associated with the system; its properties are repre-
sented by operators acting in this Hilbert space, i.e., by rules for transitions
from one ray to another. In the old quantum theory, one bent over backward to
retain classical phase space. Quantum conditions formulated in various ways in
(Sommerfeld, 1915a), (Wilson, 1915), (Ishiwara, 1915), (Schwarzschild, 1916),
and (Epstein, 1916) only restricted the allowed orbits of points in phase space.
These conditions restricted the value of so-called action integrals for every
degree of freedom of some multiply-periodic system to integral numbers of
Planck’s constant h:∮

pidqi = nih, (1)

where the integral is extended over one period of the generalized coordinate
qi (there is no summation over i).

Imposing such quantum conditions on classical phase space would not do in
the end. As the picture of the interaction of matter and radiation in the old
quantum theory already suggests, more drastic steps were required. In Bohr’s
theory the frequency νi→f of the radiation emitted when an electron makes
the transition from an initial state i to a final state f is given by the en-
ergy difference Ei − Ef between the two states divided by Planck’s constant
h. Except in the limiting case of high quantum numbers, this radiation fre-
quency differs sharply from the frequencies with which the electron traverses
its quantized orbits in classical phase space before and after emission. This
was widely recognized as the most radical aspect of the Bohr model. Erwin
Schrödinger (1887–1961), for instance, opined in 1926 that this discrepancy
between radiation frequency and orbital frequency 42

42 Imre Lakatos (1970, 150–151) gives a lengthy quotation from an obituary of
Planck by Born (1948), in which the same point is made more forcefully. The quo-
tation even repeats some of the language of Schrödinger’s letter: “That within the
atom certain quantized orbits . . . should play a special role, could well be granted;
somewhat less easy to accept is the further assumption that the electrons moving on
these curvilinear orbits . . . radiate no energy. But that the sharply defined frequency
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. . . seems to me, (and has indeed seemed to me since 1914), to be something
so monstrous, that I should like to characterize the excitation of light in this
way as really almost inconceivable. 43

One area of the old quantum theory in which this “monstrous” element became
glaringly and unavoidably apparent was in the treatment of optical dispersion,
the differential refraction of light of different colors. It was in this area that
physicists most keenly felt the tension between orbital frequencies associated
with individual states (the quantized electron orbits of the Bohr-Sommerfeld
model) and radiation frequencies associated with transitions between such
states. The key point of Heisenberg’s Umdeutung paper was to formulate a
new theory not in terms of properties of individual quantum states but in
terms of transitions between states without even attempting to specify the
states themselves. What, above all, prepared the ground for this move, as we
shall demonstrate in detail below, was the development of a quantum theory of
dispersion by Rudolf Ladenburg (1889–1953), Fritz Reiche (1883–1969), Bohr,
Kramers, Van Vleck, Slater, and others.

By comparison, many of the other preoccupations of the old quantum theory,
such as a detailed understanding of spectral lines, the Zeeman and Stark ef-
fects, and the extension of the Bohr-Sommerfeld model to multi-electron atoms
(in particular, Helium) mostly added to the overall confusion and did little to
stimulate the shift to the new mode of thinking exemplified by the Umdeu-
tung paper. 44 The same is true—as we shall see, pace (Stuewer, 1975)—for
the broad acceptance of Einstein’s 1905 light-quantum hypothesis following
the discovery of the Compton effect in 1923. What was crucial for the devel-
opment of matrix mechanics were the A and B coefficients for emission and
absorption of Einstein’s quantum theory of radiation, despite its use of light
quanta. Physicists working on dispersion theory were happy to use the A and
B coefficients but they were just as happy to continue thinking of light as
consisting of waves rather than particles. 45

of an emitted light quantum should be different from the frequency of the emitting
electron would be regarded by a theoretician who had grown up in the classical
school as monstrous and almost inconceivable” (our emphasis). Unfortunately, the
passage quoted here by Lakatos is nowhere to be found in (Born, 1948)!
43 Schrödinger to Lorentz, June 6, 1926 (Klein, 1967, 61).
44 For detailed analyses of some of these bewildering developments, see, e.g., (Serwer,
1977; Forman, 1968, 1970).
45 John Hendry (1981, 197) makes the provocative claim that “since Sommerfeld was
the only known convert to the light-quantum concept as a result of the Compton
effect whose opinions were of any real historical importance, this places Stuewer’s
thesis on the importance of the effect in some doubt.” It is our impression that the
Compton effect did convince many physicists of the reality of light quanta, just as
(Stuewer, 1975) says it did, but we agree with Hendry (1981, 6) that this made
surprisingly little difference for the further development of quantum physics.
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2.1 Dispersion theory and the old quantum theory

Dispersion can boast of a venerable history in the annals of science, which
reaches back at least to Descartes’ rainbow and Newton’s prism. The old quan-
tum theory was certainly not the first theory for which dispersion presented
serious difficulties. Neither Newtonian particle theories of light of the 18th
century nor the wave theory of the early-19th century provided convincing
accounts of dispersion (Cantor, 1983). In the wave theory of Thomas Young
(1773–1829) and Augustin Jean Fresnel (1788–1827), the index of refraction
of transparent matter is related to the density of the luminiferous ether, the
medium thought to carry light waves, inside of it. To account for dispersion,
i.e., for the dependence of the refractive index on the color of the refracted
light, proponents of the wave theory had to assume that the ether density
in transparent matter was different for different colors! Similarly, one had to
assume that matter contained different amounts of ether for the ordinary and
the extraordinary ray in double refraction. The problem likewise affected the
optics of moving bodies (Janssen and Stachel, 2004; Stachel, 2005). To ac-
count for the absence of any signs of motion of the earth with respect to the
ether, Fresnel (1818) introduced what is known as the “drag” coefficient. He
assumed that transparent matter with index of refraction n carries along the
ether inside of it with a fraction f = 1 − 1/n2 of its velocity with respect to
the ether. Although it was widely recognized in the 19th century that the drag
coefficient was needed to account for the null results of numerous ether drift
experiments, many physicists expressed strong reservations about the under-
lying physical mechanism proposed by Fresnel, since it implied that, because
of dispersion, matter had to drag along a different amount of ether for every
frequency of light!

One of the great triumphs of Lorentz’s elaboration of the electromagnetic the-
ory of light in the early 1890s was that he could derive the drag coefficient
without having to assume an actual ether drag (Lorentz, 1892). In Lorentz’s
theory, the ether is immobile, the ether density is the same everywhere, inside
and outside of matter, and the index of refraction is related, not to ether den-
sity, but to the polarization of harmonically-bound charges, later to be iden-
tified with electrons, inside transparent matter. The resonance frequencies of
these oscillating charges correspond to the material’s experimentally-known
absorption lines. Lorentz’s dispersion theory was further developed by Paul
Drude (1863–1906). This classical Lorentz-Drude dispersion theory was re-
markably successful in accounting for the experimental data. 46 Two centuries
after Newton, there finally was a reasonably satisfactory theory of dispersion.
Only two decades later, however, the model of matter underlying this theory

46 In 1896, Lorentz was also able to account for the Zeeman effect on the basis of
this same picture of the interaction of matter and radiation (Kox, 1997).
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was called into question again with the rise of the old quantum theory. The
electrons oscillating inside atoms in the Lorentz-Drude model were replaced by
electrons orbiting the nucleus in the Rutherford-Bohr model. As we shall see,
the Lorentz-Drude theory nonetheless played a key role in the development of
a quantum theory of dispersion in the early 1920s.

The basic model of dispersion in the Lorentz-Drude theory is very simple. 47

Suppose an electromagnetic wave of frequency ν (we are not concerned with
how and where this wave originated) strikes a charged one-dimensional simple
harmonic oscillator with characteristic frequency ν0. We focus on the case
of so-called normal dispersion, where the frequency ν of the electromagnetic
wave is far from the resonance frequency ν0 of the oscillator. The case where
ν is close to ν0 is called anomalous dispersion. We can picture the oscillator
as a point particle with mass m and charge −e (where e is the absolute value
of the electron charge) on a spring with equilibrium position x = 0 and spring
constant k, resulting in a restoring force F = −kx. The characteristic angular

frequency ω0 = 2πν0 is then given by
√

k/m. The electric field E of the incident

electromagnetic wave 48 will induce an additional component of the motion
at the imposed frequency ν. This component will be superimposed on any
preexisting oscillations at the characteristic frequency ν0 of the unperturbed
system. It is this additional component of the particle motion, coherent with
the incident wave (i.e., oscillating with frequency ν), that is responsible for
the secondary radiation that gives rise to dispersion. The time-dependence of
this component is given by:

∆xcoh(t) = A cos ωt, (2)

where ω = 2πν. To determine the amplitude A, we substitute eq. (2) into
the equation of motion for the system. As long as we are far from resonance,

47 Classical dispersion theory is covered elegantly in ch. 31 of Vol. 1 of the Feynman
lectures (see also ch. 32 of Vol. 2). Feynman makes it clear that this theory remains
relevant in modern physics: “we will assume that the atoms are little oscillators,
that is that the electrons are fastened elastically to the atoms . . . You may think
that this is a funny model of an atom if you have heard about electrons whirling
around in orbits. But that is just an oversimplified picture. The correct picture
of an atom, which is given by the theory of wave mechanics, says that, so far as
problems involving light are concerned, the electrons behave as though they were
held by springs” (Feynman et al., 1964, Vol. 1, 31-4).
48 We need not worry about the effects of the magnetic field B. The velocity of
electrons in typical atoms is of order αc, where c is the velocity of light and α ' 1

137
is the fine-structure constant. The effects due to the magnetic field are thus a factor
1

137 smaller than those due to the electric field and can be ignored in all situations
considered in this paper.
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radiation damping can be ignored and the equation of motion is simply: 49

mẍ = −mω2
0x− eE cos ωt, (3)

where dots indicate time derivatives and where we have made the innocuous
simplifying assumption that the electric field of the incident wave is in the
x-direction. Substituting ∆xcoh(t) in eq. (2) for x(t) in eq. (3), we find:

−mω2A cos ωt = (−mω2
0A− eE) cos ωt. (4)

It follows that

A =
eE

m(ω2 − ω2
0)

. (5)

The central quantity in the Lorentz-Drude dispersion theory is the dipole
moment p(t) ≡ −e∆xcoh(t) of the oscillator induced by the electric field of the
incident electromagnetic wave. From eqs. (2) and (5) it follows that:

p(t) = −e∆xcoh(t) =
e2E

4π2m(ν2
0 − ν2)

cos 2πνt. (6)

For groups of fi oscillators of characteristic frequencies νi per unit volume, this
formula for the dipole moment naturally generalizes to the following result for
the polarization (i.e., the dipole moment per unit volume):

P (t) =
e2E

4π2m

∑
i

fi

ν2
i − ν2

cos 2πνt. (7)

The polarization, in turn, determines the index of refraction (see, e.g., Feyn-
man et al., 1964, Vol. 1, 31-5). 50

An early and influential attempt to bring dispersion theory under the um-
brella of the old quantum theory was made by Sommerfeld (1915b, 1917) and

49 In sec. 3.3, we show how to take into account the effects of radiation damping.
50 An indication that the Lorentz-Drude picture was not quite right was that it
gave the wrong value for e2/m. For dispersion in gases the number densities fi in
eq. (7) can be related to Avogadro’s number on the assumption that dispersion only
involves valence electrons. The value e2/m extracted from dispersion measurements
in gases on the basis of the Lorentz-Drude formula and this plausible assumption
differed by as much as 25% from other determinations of e2/m (Sommerfeld, 1917,
498). On balance, however, the treatment of dispersion was seen as an important
success for Lorentz’s classical theory.
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by his former student Peter Debye (1884–1966) (Debye, 1915). 51 Clinton J.
Davisson (1881–1958), then working at the Carnegie Institute of Technology
in Pittsburgh, also made an important contribution (Davisson, 1916). 52 The
Debye-Sommerfeld theory, as it came to be known, was based on the dubious
assumption that the secondary radiation coming from small perturbations of
a Bohr orbit induced by incident radiation could be calculated on the basis
of ordinary classical electrodynamics, even though, by the basic tenets of the
Bohr model, the classical theory did not apply to the original unperturbed
orbit. In other words, it was assumed that while the large accelerations of the
electron moving on a Bohr orbit would produce no radiation whatsoever, the
comparatively small accelerations involved in the slight deviations from this
orbit would. 53 Otherwise, the theory stayed close to the Lorentz-Drude the-
ory, substituting small deviations in the motion of electrons from their Bohr
orbits for small deviations from the vibrations of simple harmonic oscillators
at their characteristic frequencies.

Both the Swedish physicist Carl Wilhelm Oseen (1879–1944) and Bohr severely
criticized the way in which Debye and Sommerfeld modeled their quantum
dispersion theory on the classical theory of Lorentz and Drude. Oseen (1915,
405) wrote:

Bohr’s atom model can in no way be reconciled with the fundamental as-
sumptions of Lorentz’s electron theory. We have to make our choice between

51 For other historical discussions of the development of quantum dispersion theory,
see, e.g., (Darrigol, 1992, 224–230), (Dresden, 1987, 146–159, 215–222), (Jammer,
1966, 165 and sec. 4.3, especially 188–195), (Mehra and Rechenberg, 1982–2001,
Vol. 1, sec. VI.1; Vol. 2, sec. III.5, 170–190), and (Whittaker, 1953, Vol. 1, 401,
Vol. 2, 200–206). Van Vleck (1926a, sec. 49, 156–159) briefly discusses the early at-
tempts to formulate a quantum theory of dispersion in his review article on the old
quantum theory. We focus on the theory of Debye and Sommerfeld. Van Vleck also
mentions theories by Charles Galton Darwin (1887–1962), Adolf Gustav Smekal
(1895–1959), and Karl F. Herzfeld (1892–1978). All three of these theories make
use of light quanta. In addition, strict energy conservation is given up in the the-
ory of Darwin (1922, 1923), while in the theories of Smekal (1923) and Herzfeld
(1924) orbits other than those picked out by the Bohr-Sommerfeld condition (1) are
allowed, a feature known as “diffuse quantization.” For other (near) contemporary
reviews of dispersion theory, see (Pauli, 1926, 86–96), (Andrade, 1927, 669–682), and
(Breit, 1932). Stolzenburg (1984, 17–18) briefly discusses Bohr’s critical reaction to
Darwin’s dispersion theory.
52 In 1927 at Bell Labs, Davisson and his assistant Lester H. Germer (1896–1971)
would do their celebrated work on electron diffraction (Davisson and Germer, 1927),
another great American contribution to (experimental) quantum physics for which
the authors received the 1937 Nobel prize (Kevles, 1978, 188–189).
53 Sommerfeld (1915b, 502) realized that this assumption was problematic and tried
(unconvincingly) to justify it.
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these two theories . . . A theory based on Bohr’s hypothesis as well as on
Lorentz’s electron theory must suffer from inconsistencies. Such a theory is
Debye-Sommerfeld’s theory of the dispersion of light. 54

Bohr agreed. The central problem was that in Bohr’s theory the link be-
tween radiation frequencies and orbital frequencies had been severed. As Bohr
explained to Oseen in a letter of December 20, 1915, if the characteristic fre-
quencies involved in dispersion

. . . are determined by the laws for quantum emission, the dispersion cannot,
whatever its explanation, be calculated from the motion of the electrons and
the usual electrodynamics, which does not have the slightest connection with
the frequencies considered (Bohr, 1972–1996, Vol. 2, 337).

Bohr elaborated on his criticism of the Debye-Sommerfeld theory in a lengthy
paper intended for publication in Philosophical Magazine in 1916 but with-
drawn after it was already typeset. 55 Bohr argued (we leave out the specifics
of the experiments on dispersion in various gases that Bohr mentions in this
passage):

[E]xperiments . . . show that the dispersion . . . can be represented with a
high degree of approximation by a simple Sellmeier formula 56 in which the
characteristic frequencies coincide with the frequencies of the lines in the
. . . spectra . . . [T]hese frequencies correspond with transitions between the
normal states of the atom . . . On this view we must consequently assume
that the dispersion . . . depends on the same mechanism as the transition
between different stationary states, and that it cannot be calculated by
application of ordinary electrodynamics from the configuration and motions
of the electrons in these states (Bohr, 1972–1996, Vol. 2, 448–449).

In the next paragraph, Bohr added a prescient comment. Inverting the line
of reasoning in the pasage above that dispersion should depend on the same
mechanism as the transition between states, he suggested that the transition
between states, about which the Bohr theory famously says nothing, should
depend on the same mechanism as dispersion:

[i]f the above view is correct . . . we must, on the other hand, assume that
this mechanism [of transitions between states] shows a close analogy to an

54 Quoted and discussed in (Bohr, 1972–1996, Vol. 2, 337)
55 The paper, dated January 1916 and entitled “On the application of the quantum
theory to periodic systems,” can be found in (Bohr, 1972–1996, Vol. 2, 433–461).
For further discussion of Bohr’s early views on dispersion, see (Heilbron and Kuhn,
1969, 281–283).
56 This is a formula of the form of eq. (7) derived on the basis of an elastic-solid
theory of the ether in (Sellmeier, 1872) (Jammer, 1966, 189).
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ordinary electrodynamic vibrator. This is indicated by the fact that the
dispersion in many cases can be closely represented by a Sellmeier formula
(ibid.).

As we shall see, in the quantum dispersion theory of the 1920s, the Lorentz-
Drude oscillators were grafted onto the Bohr model. For the time being, how-
ever, it was unclear how to arrive at a satisfactory quantum theory of dis-
persion. The quasi-classical Debye-Sommerfeld theory led to a formula for the
induced polarization of the form of eq. (7) but with resonance poles at frequen-
cies corresponding to the Fourier decomposition of the mechanical motion of
the original unperturbed Bohr orbit. As Oseen and Bohr pointed out, this was
in blatant contradiction with the experimental data, which clearly indicated
that the induced polarization should be a sum of resonance terms with poles
at frequencies corresponding to absorption lines of the dispersive medium—
in terms of the Bohr model, at frequencies corresponding to differences of
energies of two distinct stationary states of the atom or molecule.

This criticism is repeated in more sophisticated form in a paper by Paul So-
phus Epstein (1883–1966) with the subtitle “Critical comments on dispersion.”
This paper is the concluding installment of a trilogy on the application of
classical perturbation theory to problems in the old quantum theory (Epstein,
1922a,b,c). Epstein, a Russian Jew who studied with Sommerfeld in Munich,
was the first European quantum theorist to be lured to America. Millikan
brought him to the California Institute of Technology in Pasadena in 1921. 57

To deal with the kind of multiply-periodic systems that represent hydrogenic
atoms (i.e., atoms with only one valence electron) in the old quantum theory,
Epstein customized techniques developed in celestial mechanics for computing
the perturbations of the orbits of the inner planets due to the gravitational
pull of the outer ones. The perihelion advance of Mercury due to such pertur-
bations, for instance, is more than ten times the well-known 43′′ per century

57 For further discussion of Epstein’s position at Caltech, see (Seidel, 1978, 507–
520). In his 1926 review article Van Vleck emphasizes the importance of the work
of his colleague at Caltech and notes that it “is rather too often overlooked” (Van
Vleck, 1926a, 164, note 268), to which one might add: “by European physicists.” As
we saw in sec. 1.4, Van Vleck felt the same way about his own contributions. Like
Van Vleck, Epstein apparently complained about this lack of recognition to Born.
This can be inferred from a letter from Born to Sommerfeld of January 5, 1923:
“When you talk to Epstein in Pasadena and he complains about me, tell him that
he should show you the very unfriendly letter he wrote to me because he felt that
his right as first-born had been compromised by the paper on perturbation theory
by Pauli and me [Born and Pauli, 1922, which appeared shortly after Epstein’s
trilogy]. Also tell him that I do not answer such letters but that I do not hold a
grudge against him because of his impoliteness (to put it mildly) . . . In terms of
perturbative quantization we are ahead of him anyway” (Sommerfeld, 2004, 137).
We are grateful to Michael Eckert for drawing our attention to this passage.
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due to the gravitational field of the sun as given by general relativity. Such
calculations in classical mechanics are also the starting point of the later more
successful approach to dispersion theory by Kramers and Van Vleck. Epstein
clearly recognized that these calculations by themselves do not lead to a satis-
factory theory of dispersion. In the introduction of his paper, Epstein (1922c,
92) explains that he discusses dispersion mainly because it nicely illustrates
some of the techniques developed in the first two parts of his trilogy. He warns
the reader that his approach is essentially the same as that of the Debye-
Sommerfeld theory, and emphasizes that “this point of view leads to internal
contradictions so strong that I consider the Debye-Davysson [sic] dispersion
theory [as Epstein in Pasadena referred to it] to be untenable” (ibid.). The
central problem is once again the discrepancy between radiation frequencies
and orbital frequencies. As Epstein (1922c, 107–108) wrote in the conclusion
of his paper:

the positions of maximal dispersion and absorption [in the formula he de-
rived] do not lie at the position of the emission lines of hydrogen but at the
position of the mechanical frequencies of the model . . . the conclusion seems
unavoidable to us that the foundations of the Debye-Davysson [sic] theory
are incorrect.

Epstein (1922c, 110) recognized that a fundamentally new approach was re-
quired:

We believe that to obtain formulae in good agreement [with the data] dis-
persion theory must be put on a whole new basis, in which one takes the
Bohr frequency condition into account from the very beginning.

Quantum dispersion theory began to emerge from the impasse noted here by
Epstein through work by Ladenburg and Reiche in Breslau, 58 which was al-
ready under way by the time Epstein wrote these lines. Ladenburg (1921) 59

was the first to use one of two key ingredients needed for a satisfactory treat-
ment of dispersion: the emission and absorption coefficients of Einstein’s 1916
quantum theory of radiation. The other critical ingredient, as we shall see
below, was Bohr’s correspondence principle.

58 Reiche came to Breslau in 1921. From 1918 to 1921 he had been at the Kaiser
Wilhelm Institut für Physikalische Chemie und Elektrochemie in Berlin. In 1924,
Ladenburg left Breslau to take up a position at the Kaiser Wilhelm Institut. Laden-
burg emigrated to the United States in 1931, spending the rest of his career at
Princeton University. Reiche only came to the United States in 1941, eventually
becoming an adjunct professor at New York University (Mehra and Rechenberg,
1982–2001, Vol. 1, 633, 636). See (Bederson, 2005) for more on Reiche.
59 Ladenburg (1921, 140, note) prominently acknowledged Reiche’s help with this
paper. They co-authored two follow-up papers (Ladenburg and Reiche, 1923, 1924).
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As we shall show in detail in sec. 5.1, the dispersion formula that Ladenburg
found for quantum systems in their normal or ground state is still valid in
modern quantum mechanics, as is the more general formula for dispersion
in quantum systems in arbitrary states first published by Kramers (1924a,b)
in two notes in Nature and further clarified by Van Vleck (1924b,c) in his
comprehensive study of applications of the correspondence principle to the
interaction of matter and radiation. Ladenburg’s formula is a special case of
Kramers’ formula. But not only does Ladenburg’s formula lack the generality
of the Kramers formula, Ladenburg’s derivation of his formula also lacks the
cogency of the derivations of the Kramers formula by Kramers or Van Vleck.

Ladenburg obtained his formula by equating results derived for what would
seem to be two mutually exclusive models of matter, a classical and a quan-
tum model. He calculated the rate of absorption of energy both for a collection
of classical oscillators à la Lorentz and Drude, resonating at the absorption
frequencies, and for a collection of atoms à la Bohr and Einstein with transi-
tions between discrete energy levels corresponding to these same frequencies.
Ladenburg set the two absorption rates equal to one another. In this way,
he obtained a formula of the form of eq. (7) for the induced polarization of a
group of Nr atomic systems in their ground state r with resonance poles at the
right frequencies νs→r corresponding to the allowed transitions from excited
states s down to the ground state r:

Pr(t) =
Nrc
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32π4

∑
s

As→r

ν2
s→r(ν

2
s→r − ν2)

cos 2πνt. (8)

The factors As→r are Einstein’s absorption coefficients for these transitions. 60

Ladenburg’s formula was verified experimentally by Ladenburg and Reiche
(1923).

Ladenburg’s paper initially did not attract much attention. It is not mentioned
in Epstein’s trilogy the following year, but then Epstein was working in far-
away California. More surprisingly, quantum physicists in Göttingen, Munich,
and Copenhagen, it seems, also failed to take notice, even though Ladenburg
was well-known to his Göttingen colleagues Born and James Franck (1882–
1964). Bohr also knew Ladenburg personally: Ladenburg had attended Bohr’s
colloquium in Berlin in April 1920 and the two men had exchanged a few

60 The ratio e2/m occurs in the expression for the absorption coefficient (as we shall
show in detail in secs. 3.2 and 4.1). Ladenburg’s work thus explained the anomalous
values for e2/m mentioned in note 50 above. The dependence of polarization on
e2/m is not quite as simple as that given by the Lorentz-Drude formula (7). The
value of e2/m, however, can be inferred from dispersion measurements through the
values of the absorption coefficients, which in turn can be determined by measuring
the lifetimes of excited states.
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letters since (Bohr, 1972–1996, Vol. 4, 709–717).

Heisenberg later attributed the neglect of Ladenburg in Göttingen and Mu-
nich to the problem of connecting Ladenburg’s work, which was closely tied
to Einstein’s radiation theory, with the dominant Bohr-Sommerfeld theory
(Mehra and Rechenberg, 1982–2001, Vol. 2, 175–176). According to Heisen-
berg, it was only when Kramers (1924a,b) rederived Ladenburg’s formula a
few years later that its significance was widely appreciated. Ladenburg’s own
derivation had been unconvincing, at least to most physicists. 61 He offered
no justification for equating the result for his classical model to that for his
Einsteinian quantum model of matter. Commenting on Ladenburg’s paper,
van der Waerden (1968, 10) suggests that Ladenburg implicitly appealed to
Bohr’s correspondence principle: “By the principle of correspondence, this re-
lation must hold in the limit for large quantum numbers. Hence, Ladenburg’s
guess is, that it be generally true.” However, there is simply no mention of the
correspondence principle anywhere in Ladenburg’s paper. Given that Laden-
burg only considered dispersion in atoms in their ground state and not in
atoms in highly excited states where classical and quantum theory may be
expected to merge in the sense of the correspondence principle, invoking the
correspondence principle would have been unwarranted in any case. Still, if
Heisenberg’s later recollections are to be trusted, it might have helped the
reception of Ladenburg’s paper had he made some reference to the correspon-
dence principle.

Unlike his colleagues in Göttingen and Munich, Bohr, in fact, did take notice
of the paper early on. He was just slow expressing himself about it in print.
As noted in (Hendry, 1981, 192), Bohr referred to (Ladenburg, 1921) in the
very last sentence of “Application of the quantum theory to atomic problems
in general” (Bohr, 1972–1996, Vol. 3, 397–414), a manuscript he did not date
and never finished but which can reliably be dated to 1921 on the basis of
several similarities to letters Bohr wrote to Darwin and Ehrenfest around the
same time. In a paper submitted in November 1922, Bohr (1923b, 162) finally
discussed Ladenburg’s work in print. After repeating some of the observations
about dispersion made in the passages of his unpublished 1916 paper quoted
above, Bohr, in his usual verbose style, made some remarks that anticipate
aspects of the 1924 Bohr-Kramers-Slater theory (see sec. 2.2):

the phenomena of dispersion must thus be so conceived that the reaction
of the atom on being subjected to radiation is closely connected with the

61 As Kuhn puts it in his interview with Slater for the AHQP (see note 10): “Of
course, there was a good deal that appeared to most physicists as pretty totally
ad hoc about the Reiche-Ladenburg work, and the whole question as to why it was
the transition frequencies that occurred in the denominator rather than the orbital
frequencies.” Slater disagreed: “This seemed to me perfectly obvious . . . ” (p. 41 of
the first session of the AHQP interview with Slater).
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unknown mechanism which is answerable [the German has verantwortlich:
responsible] for the emission of the radiation on the transition between sta-
tionary states. In order to take account of the observations, it must be
assumed that this mechanism . . . becomes active when the atom is illumi-
nated in such a way that the total reaction of a number of atoms is the same
as that of a number of harmonic oscillators in the classical theory, 62 the
frequencies of which are equal to those of the radiation emitted by the atom
in the possible processes of transition, and the relative number of which is
determined by the probability of occurrence of such processes of transition
under the influence of illumination. A train of thought of this kind was first
followed out closely in a work by Ladenburg [1921] in which he has tried,
in a very interesting and promising manner, to set up a direct connection
between the quantities which are important for a quantitative description of
the phenomena of dispersion according to the classical theory and the coef-
ficients of probability appearing in the deduction of the law of temperature
radiation by Einstein (Bohr, 1972–1996, Vol. 3, 496).

A letter from Bohr to Ladenburg of May 17, 1923 offers further insights into
Bohr’s developing views on the mechanism of radiation:

to interpret the actual observations, it . . . seems necessary to me that the
quantum jumps are not the direct cause of the absorption of radiation, but
that they represent an effect which accompanies the continuously dispersing
(and absorbing) effect of the atom on the radiation, even though we cannot
account in detail for the quantitative relation [between these two effects]
with the usual concepts of physics (Bohr, 1972–1996, Vol. 5, 400).

At the beginning of this letter, Bohr mentioned the vagueness of some of
his earlier pronouncements on the topic. After the passage just quoted he
acknowledged “that these comments are not far behind the earlier ones in
terms of vagueness. I do of course reckon with the possibility that I am on the
wrong track but, if my view contains even a kernel of truth, then it lies in the
nature of the matter that the demand for clarity in the current state of the
theory is not easily met” (ibid.). Bohr need not have been so apologetic. His
comments proved to be an inspiration to Ladenburg and Reiche. On June 14,
1923, Ladenburg wrote to Bohr:

Over the last few months Reiche and I have often discussed [the absorption
and scattering of radiation] following up on your comments in [Bohr 1923b]
about reflection and dispersion phenomena and on my own considerations
[Ladenburg 1921] which you were kind enough to mention there (Bohr,
1972–1996, Vol. 5, 400–401).

62 Note the similarity between Bohr’s description here to Feynman’s observation
(quoted in note 47 above) that atoms behave like oscillators “so far as problems
involving light are concerned.”
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In this same letter, Ladenburg announced his forthcoming paper with Reiche
in a special issue of Die Naturwissenschaften to mark the tenth anniversary of
Bohr’s atomic theory. In the conclusion of their paper, Ladenburg and Reiche
(1923, 597) wrote: 63

Surveying the whole area of scattering and dispersion discussed here, we
have to admit that we do not know the true [eigentlich] mechanism through
which an incident wave acts on the atoms and that we cannot describe the
reaction of the atom in detail. This is no different by the way in the case
of the true [eigentlich] quantum process, be it that an external wave ν0 lifts
electrons into higher quantum states, or be it that a wave ν0 is sent out
upon the return to lower states. We nevertheless believe on the grounds of
the observed phenomena that the end result of a process in which a wave
of frequency ν acts upon the atom should not be seen as fundamentally
different from the effect that such a wave exerts on classical oscillators.

Ladenburg and Reiche (1923, 588, 590) introduced the term “Ersatz-oscillators”
for such classical oscillators representing the atom as far as its interaction with
radiation is concerned. They credited Bohr with the basic idea. 64 As we shall
see in sec. 2.2, these Ersatz-oscillators became the “virtual oscillators” of the
Bohr-Kramers-Slater theory.

Unlike Ladenburg in 1921, Ladenburg and Reiche prominently mentioned both
Bohr’s atomic theory and the correspondence principle in their 1923 paper.
The authors’ understanding and use of the correspondence principle, however,
are still tied strongly to Einstein’s quantum theory of radiation. Their “cor-
respondence” arguments apply not to individual quantum systems, for which
Bohr’s correspondence principle was formulated, but to collections of such
systems in thermal equilibrium with the ambient radiation. The authors also
do not limit their “correspondence” arguments to the regime of high quan-
tum numbers (Ladenburg and Reiche, 1923, especially secs. 4–5, 586–589).
These problems invalidate many of the results purportedly derived from the
correspondence principle in their paper. Drawing on earlier work by Planck,
they derived a result for emission consistent with the correspondence principle
(i.e., merging with the classical result in the limit of high quantum numbers),
but their attempts to derive similar results for absorption and dispersion were
unconvincing. In fact, it may very well be that these dubious attempts were
the direct inspiration for Van Vleck to formulate correspondence principles for
emission, absorption, and dispersion (see sec. 3.3 for further discussion).

63 Quoted and discussed in (Hendry, 1981, 192).
64 See also (Ladenburg and Reiche, 1924, 672). Van Vleck (1926a, 159, note 260)
reports that Lorentz made a similar suggestion at the third Solvay congress in
1921 (Verschaffelt et al., 1923, 24), but does not mention Ladenburg and Reiche
in this context, attributing the idea to (Slater, 1924) instead. (Herzfeld, 1924, 350)
mentions Ersatz-oscillators and does cite (Ladenburg and Reiche, 1923).
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Given Bohr’s strong interest in dispersion theory, it is not surprising that
it was his first lieutenant Kramers who took the next big step after Laden-
burg and Reiche. 65 Ladenburg’s formula, as we mentioned above, only holds
for systems in the ground state. The correspondence principle only applies
to highly excited states with large quantum numbers. Kramers (1924a,b) 66

and Van Vleck (1924b,c) showed that the correspondence principle requires a
formula with two terms,

Pr(t) =
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where r refers to a highly excited state to which the correspondence principle
can be applied, and s and t to states above and below r, respectively (see
secs. 3.2 and 4.2 for details). The first term is Ladenburg’s formula, which
represents the full answer if we assume that the result (9) can be extended to
the low-quantum-number regime unaltered, and if we give r the value for the
ground state, with no further states t below it. Van Vleck (1924b) clarified
the physical interpretation of the second term by comparing this formula for
dispersion to a similar formula he derived for absorption (see sec. 3.3).

The construction of the dispersion formula (9) by Kramers—and by Van
Vleck—required, as a prelude to the application of the correspondence princi-
ple, a derivation of the classical formula for the dipole moment of an arbitrary
(non-degenerate) multiply-periodic system. This is where Ladenburg and Rei-
che came up short. Kramers and Van Vleck, like Epstein before them, used
canonical perturbation techniques from celestial mechanics to derive this for-
mula (see secs. 3.1 and 4.2 for details). Unlike Epstein, however, they were
able to make dramatic progress by fully exploiting the power of both Ein-
stein’s radiation theory and Bohr’s correspondence principle. They considered
transitions between neighboring states with high quantum numbers, replaced
derivatives with respect to the action occurring in the classical dispersion
formula by difference quotients, 67 amplitudes by Einstein coefficients Ai→f ,
and orbital frequencies by transition frequencies νi→f (see secs. 3.2 and 4.2
for details). Explicitly appealing to the kind of logic mistakenly attributed
to Ladenburg by Van der Waerden, Kramers and Van Vleck took the leap of
faith that their difference formula (9) 68 merging with the classical formula for

65 Hendry (1984, 46) goes as far as calling Kramers’ theory “the Bohr-Kramers
dispersion theory.”
66 In addition to the literature cited in note 51, see (Ter Haar, 1998, 23–30) for
discussion of Kramers’ work on dispersion theory.
67 This replacement is known as “Born’s correspondence rule.” It was in fact found
independently of Born both by Kramers and by Van Vleck. We shall return to this
point in sec. 3.2.
68 This formula is not uniquely determined and it took some inspired guesswork
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high quantum numbers would hold all the way down to states with low quan-
tum numbers including the ground state. It would take several years before
the terms for atoms in excited states in the general dispersion formula were
verified experimentally—and then only in an indirect manner—by the Indian
physicist Chandrasekhara Venkata Raman (1888–1970) and by the Russians
Grigoriaei Samjuilovich Landsberg (1890–1957) and Leonid Isaakovich Man-
delstam (1879–1944) (Raman, 1928; Landsberg and Mandelstam, 1928). 69

The quantum dispersion theory of Kramers and Van Vleck was a crucial step in
the transition from the old quantum theory to matrix mechanics, and thereby
in the transition from classical phase spaces to Hilbert spaces. As was noted
by Kramers (1924b, 311) in his second note to Nature—written in response to
a letter by Minnesota’s Gregory Breit (1924b)—the dispersion formula (9)

only contains such quantities as allow of a direct physical interpretation
on the basis of the fundamental postulates of the quantum theory . . . and
exhibits no further reminiscence of the mathematical theory of multiple [sic]
periodic systems.

This point is amplified in (Kramers and Heisenberg, 1925, 234):

we shall obtain, quite naturally, formulae which contain only the frequencies
and amplitudes which are characteristic for the transitions, while all those
symbols which refer to the mathematical theory of periodic systems will
have disappeared (our emphasis).

Orbits do not correspond to observable quantities, but transitions do, namely
to the frequency νi→f of the emitted radiation, and, through the Einstein co-
efficients Ai→f , to its intensity. In the introduction of his Umdeutung paper,
Heisenberg (1925c, 262) explained that he wanted “to establish a theoreti-
cal quantum mechanics, analogous to classical mechanics, but in which only
relationships between observable quantities occur.” In the next sentence he
identified the Kramers dispersion theory as one of “the most important first
steps toward such a quantum-theoretical mechanics” (ibid.). Rather than us-
ing classical mechanics to analyze features of electron orbits and translating
the end result into quantities associated with transitions between orbits on the
basis of the correspondence principle, as Kramers and Van Vleck had done,
Heisenberg set out to formulate a new theory directly in terms of transitions

guided by the correspondence principle to arrive at the one that would prove to be
correct in modern quantum theory.
69 See (Mehra and Rechenberg, 1982–2001, Vol. 2, 188). See (Singh, 2002) for the
history of the work leading up to Raman’s discovery of the effect named after him.
Ladenburg (1926, 1213) emphasized the desirability of experimentally demonstrat-
ing the presence of the terms for atoms in excited states in the Kramers dispersion
formula.
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between states without bothering to find a representation for the states them-
selves.

With the elimination of orbits, the Bohr-Sommerfeld quantization condition
(1) formulated in terms of orbits in phase space can no longer be used. Using
the general recipe introduced in the Umdeutung paper for translating classical
formulae into quantum-mechanical ones, Heisenberg (1925c, 268) converted (a
derivative of) the Bohr-Sommerfeld condition into an equation that contains
only amplitudes and frequencies. 70 As Heisenberg points out, this equation
had been found earlier in dispersion theory. It is the so-called Thomas-Kuhn
sum rule (Thomas, 1925; Kuhn, 1925). A detailed derivation of Thomas’ result
was given by Reiche and Thomas (1925), which is why the sum rule is also
known as the Thomas-Kuhn-Reiche sum rule. 71

Van Vleck had, in fact, been the first to find the sum rule (Sopka, 1988, 135,
note 184). As he wrote in his NRC Bulletin:

Eq. (62a) [a version of the sum rule] appears to have been first inciden-
tally suggested by the writer [Van Vleck 1924c, 359–360, footnote 43] and
then was later and independently much more strongly advanced by Thomas
. . . Kuhn . . . and Reiche and Thomas (Van Vleck, 1926a, 152).

Van Vleck is referring to a footnote in the section on dispersion in the classical
part of his paper. In this footnote he mentioned two objections that explain
why he did not put greater emphasis on the sum rule himself. Van Vleck’s
idea—which he calls “tempting (but probably futile)” (Van Vleck, 1924c, 359,
footnote 43)—was that the sum rule would allow him to compute the Einstein
A coefficients. He was under the impression, however, that “such a method

70 Since Heisenberg’s theory only deals with transitions between states, the absolute
value of the action J is irrelevant. Only the difference in J-value between two states
matters. Hence the derivative.
71 Interestingly, Reiche and Thomas use the notion of Umdeutung in describing
their goal in their paper which was submitted to the Zeitschrift für Physik in early
August 1925 about a month before (Heisenberg, 1925c) appeared in the same jour-
nal: “We use . . . the correspondence principle in the same way in which it was
applied by Kramers in the derivation of the dispersion formula by reinterpreting
(umdeuten) the mechanical orbital frequencies as radiation frequencies, the Fourier
coefficients as the “characteristic amplitudes” that determine the quantum radia-
tion, and, finally, in analogy to the Bohr frequency condition, differential quotients
as difference quotients. In the realm of high quantum numbers the classical and
quantum-theoretical representations become identical. We try to arrive at a gen-
eral relation, by maintaining the reinterpretation (Umdeutung) of classical quanti-
ties into quantum-theoretical ones for all quantum numbers” (Reiche and Thomas,
1925, 511–512). We also note that Reiche and Thomas (1925, 513) cite (Van Vleck,
1924b, 359).
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is hard to reconcile with the [experimental] work of F. C. Hoyt [1923, 1924]”
on X-ray absorption and that it “would lead to transitions from positive to
negative quantum numbers, which can scarcely correspond to any physical
reality” (ibid.).

As Heisenberg (1925c, 269–270) shows briefly in his paper, the sum rule follows
from the Kramers dispersion formula (9) if one takes the limit in which the
frequency ν of the incident radiation is much greater than any of the absorp-
tion frequencies νi→j. That the quantization condition obtained by massaging
the Bohr-Sommerfeld condition can be derived from the Kramers dispersion
theory, widely recognized as one of the most secure parts of the old quantum
theory, clearly bolstered Heisenberg’s confidence in the translation procedure
of his Umdeutung paper. So, in addition to inspiring the general approach of
the Umdeutung paper, the Kramers dispersion theory furnished Heisenberg’s
new theory with its fundamental quantization condition. It was left to Born
and Jordan (1925b) to replace the Thomas-Kuhn sum rule with the now stan-
dard commutation relations for position and momentum. These commutation
relations can be extracted from the sum rule, as we shall show in detail in
sec. 5.1. That Heisenberg stopped short of making this move, we conjecture,
is because it requires a way of looking at the sum rule that runs counter to its
interpretation in dispersion theory.

The positivism that gets pride of place in the introduction of Heisenberg’s
Umdeutung paper probably came from a variety sources. Pauli, Heisenberg’s
fellow student and frequent discussion partner (both in person and in writing),
was a devoted follower of his godfather Ernst Mach (1838–1916). 72 As Pauli
had written to Bohr, for instance, on December 12, 1924:

We must not . . . put the atoms in the shackles of our prejudices (of which in
my opinion the assumption of the existence of electron orbits in the sense
of the ordinary kinematics is an example); on the contrary, we must adapt
our concepts to experience (Bohr, 1972–1996, Vol. 5, 35–36).

We already mentioned in sec. 1.4 that Heisenberg himself later claimed that
his positivist attitude came in part from his reading of Einstein’s 1905 spe-
cial relativity paper. 73 The most important source, however, was undoubtedly
Kramers’ dispersion theory, on which, after all, he and Kramers had just pub-
lished a joint paper (Kramers and Heisenberg, 1925). In this context positivism
was not a blanket injunction against unobservable quantities in general but
had a very specific set of increasingly problematic unobservables as its target,

72 On Pauli’s positivism, see, e.g., (Hendry, 1984, 19–23) and (Gustavson, 2004).
73 See, e.g., (Holton, 2005, 26–31) for discussion. Cassidy (1991, 198) makes the
suggestive observation that Born and Jordan (1925a, 493), in a paper completed by
June 11, 1925, not only emphasized the observability principle but also appealed to
Einstein’s analysis of distant simultaneity in support of it.
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viz. the electron orbits of the Bohr-Sommerfeld theory.

As Helge Kragh (1999, 162) notes: “there was no royal road from the observ-
ability principle to quantum mechanics.” This truism is nicely illustrated by
a conversation between Einstein and Heisenberg reported years later by the
latter. The following exchange supposedly took place in Berlin in the spring
of 1926:

“But you don’t seriously believe,” Einstein protested, “that none but ob-
servable magnitudes must go into a physical theory?” “Isn’t that precisely
what you have done with relativity?” I asked in some surprise . . . “Possibly
I did use this kind of reasoning,” Einstein admitted, “but it is nonsense all
the same” (Heisenberg, 1971, 63). 74

As Einstein complained in 1917 in a letter to his friend Michele Besso (1873–
1955), referring to the excessive Machian positivism of their mutual acquain-
tance Friedrich Adler (1879–1960): “He is riding the Machian nag [den Mach-
schen Klepper] to exhaustion.” In a follow-up letter he elaborated: “It cannot
give birth to anything living, it can only stamp out harmful vermin.” 75 This
is very much true in the case of matrix mechanics as well. Heisenberg’s pos-
itivist attitude, whatever its sources, would have been perfectly sterile had
it not been for Kramers showing that the problematic Bohr orbits were fully
dispensable in dispersion theory.

74 Quoted and discussed, for instance, in (MacKinnon, 1977, 185) and in (Holton,
2005, 30–31). For another version of the same anecdote, see (Heisenberg, 1983,
113–114). In the 1940s, Heisenberg (1943a,b, 1944) once again tried to force a the-
oretical breakthrough, this time with his S-matrix theory, by restricting himself to
observable quantities, with the qualification that he had taken to heart Einstein’s
lesson that, in the end, it is the theory that determines what the observables are
(Heisenberg [1971, 63] has Einstein make this point a few sentences after the pas-
sage quoted above and acknowledged it as a source of inspiration for his uncertainty
principle). Nearly two decades after the Umdeutung paper, Heisenberg (1943a, 514)
wrote: “in this situation it seems useful to raise the question which concepts of the
present theory can be retained in the future theory, and this question is roughly
equivalent to a different question, namely which quantities of the current theory are
“observable” . . . Of course, it will always only be decided by the completed theory
which quantities are truly “observable”.” See (Cushing, 1990) and (Dresden, 1987,
453–458) for discussion of Heisenberg’s S-matrix program.
75 Einstein to Besso, April 29 and May 13, 1917, respectively (Einstein, 1987–2004,
Vol. 8, Docs. 331 and 339). For further discussion, see, e.g., (Holton, 1968).

34



2.2 Dispersion theory, virtual oscillators, and the Bohr-Kramers-Slater (BKS)
theory

The Ersatz-oscillators of (Ladenburg and Reiche, 1923) became the “virtual
oscillators” of (Bohr, Kramers, and Slater, 1924), submitted to Philosophical
Magazine on January 21, 1924. 76 As we saw in the preceding section, the idea
of virtual oscillators was essentially Bohr’s, although it is often attributed to
Slater, both by contemporaries (Van Vleck, 1924b, 330) and by later historians
(see, e.g., Stuewer, 1975, 291, 303). Bohr was probably also responsible for
the fanciful new name. Despite their close association with the BKS theory,
the main use of virtual oscillators continued to be in dispersion theory. They
formed the basis for the physical interpretation of the Kramers dispersion
formula (9) in the year and a half before Heisenberg’s Umdeutung paper.

In the abstract of (Van Vleck, 1924b, 330) it is noted that the Kramers dis-
persion formula “assumes the dispersion to be due not to the actual orbits but
to Slater’s ‘virtual’ or ‘ghost’ oscillators having the spectroscopic rather than
orbital frequencies.” 77 In the last section of this part of his paper, Van Vleck
cautioned:

The introduction of these virtual resonators is, to be sure, in some ways
very artificial, but is nevertheless apparently the most satisfactory way of
combining the elements of truth in both the classical and quantum theories.
In particular this avoids the otherwise almost insuperable difficulty that it
is the spectroscopic rather than the orbital frequencies . . . which figure in
dispersion (Van Vleck, 1924b, 344).

In his second Nature note, Kramers (1924b, 311) made a similar cautionary
remark about the use of virtual oscillators: 78

In this connexion it may be emphasized that the notation ‘virtual oscillator’
used in my former letter [Kramers, 1924a] does not mean the introduction
of any additional hypothetical mechanism, but is meant only as a terminol-
ogy suitable to characterise certain main features of the connexion between

76 See (Dresden, 1987, 221) for a helpful chronology of events in 1923–1925 pertain-
ing to BKS and dispersion theory. For discussions of the BKS theory, see, e.g., (Klein,
1970, 23–39), (Stuewer, 1975, 291–305), (Mehra and Rechenberg, 1982–2001, Vol. 1,
sec. V.2), (Hendry, 1981), (Dresden, 1987, 159–215), the essay by Klaus Stolzenburg
(1984) in (Bohr, 1972–1996, Vol. 5, 3–96) and the dissertation of Neil Wasserman
(1981).
77 See also (Van Vleck, 1926a, 163).
78 In the work that led to (Kramers and Heisenberg, 1925), however, Kramers, ac-
cording to Hendry (1981, 202), “ignored their virtual nature altogether and treated
the oscillator model as naively as he had the orbital model.”
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the description of optical phenomena and the theoretical interpretation of
spectra.

Despite such disclaimers, Kramers and Van Vleck—as well as Slater, Born,
Breit and others working in the general area of dispersion theory in 1924–
1925—used a model of the atom in which the electron orbits of the Bohr-
Sommerfeld theory were supplemented by an “orchestra of virtual oscilla-
tors” 79 with characteristic frequencies corresponding to each and every tran-
sition that an electron in a given orbit can undergo. The dual representation
of the atom as simultaneously a quantum system à la Einstein and Bohr and
a set of oscillators à la Lorentz and Drude, implicit in (Ladenburg, 1921) and
made explicit, under Bohr’s influence, in (Ladenburg and Reiche, 1923), thus
became widely accepted. Thanks to virtual oscillators—to paraphrase Heisen-
berg’s succinct statement to van der Waerden (1968, 29) in 1963—at least
something in the atom was vibrating with the right frequency again.

What was meant by the word “virtual” in this context is not exactly clear.
As the BKS authors were putting the final touches on the German version of
their paper, Bohr was anxious to ensure that Pauli approved of “the words
“communicate” and “virtual”, for after lengthy consideration, we have agreed
here on these basic pillars of the exposition.” 80 In this letter, Bohr first an-
nounced that the manuscript would be submitted that same day to Zeitschrift
für Physik and that he would enclose a copy, then added a postscript saying
that there had been further delays and that he would send it later. Amused,
Pauli wrote back a few days later:

I laughed a little (you will certainly forgive me for that) about your warm
recommendation of the words “communicate” and “virtual” and about your
postscript that the manuscript is still not yet completed. On the basis of
my knowledge of these two words (which I definitely promise you not to
undermine), I have tried to guess what your paper may deal with. But I
have not succeeded. In any case, it will interest me very much to read it
and if I can help a little with the language, I should gladly do so. 81

The term “virtual” also puzzled the group of physicists in Ann Arbor studying
the BKS paper with Bohr’s former associate Klein, who wrote to Bohr on June
30, 1924: “Colby [cf. note 21], who is also most interested in it, asked me about
the meaning of the term ‘virtual radiation’” (Stolzenburg, 1984, 29). Whatever
its exact meaning, the designation ‘virtual’ does serve as a warning that these
oscillators do not behave classically. They are, as Darrigol (1992, 257) aptly

79 The term “virtual orchestra” comes from (Landé, 1926, 456) (Jammer, 1966, 187).
80 Bohr to Pauli, February 16, 1924 (Bohr, 1972–1996, Vol. 5, 409).
81 Pauli to Bohr, February 21, 1924 (Bohr, 1972–1996, Vol. 5, 412). Our reading of
this letter differs from that of Hendry (1981, 202), who characterized it as “mock-
ing.”
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put it, “nothing but a condensed expression of their effects, which could be
deduced from the correspondence principle piece by piece but could not be
synthesized in any classical model.”

The BKS theory grew around an idea that Slater hit upon shortly before he left
for Europe in late 1923. 82 Slater suggested that the wave and particle aspects
of the behavior of light might be reconciled by having an electromagnetic field
guide corpuscular light quanta. 83 When Slater arrived in Copenhagen around
Christmas 1923, his idea was cannibalized by Bohr and Kramers, who stripped
it of all reference to light quanta. Against his better judgment—as he wrote
decades later in a letter of November 4, 1964 to van der Waerden (1968, 13)—
Slater went along and his idea entered the literature via the BKS paper. In a
short letter that Slater sent to Nature a week after this joint paper had been
submitted, he explained how Bohr and Kramers had convinced him of their
point of view and proceeded to explain his idea couched in BKS terms:

Any atom may, in fact, be supposed to communicate with other atoms all
the time it is in a stationary state, by means of a virtual field of radia-
tion originating from oscillators having the frequencies of possible quantum
transitions and the function of which is to provide for the statistical con-
servation of energy and momentum by determining the probabilities for
quantum transitions (Slater, 1924, 307).

The final clause about the statistical conservation of energy and momentum
was foisted upon Slater by Bohr and Kramers. 84 Bohr had been contemplating
such a move for several years, as can be seen, for instance, from correspondence
with Ehrenfest in 1921 in connection with the third Solvay congress held that
year (Klein, 1970, 19) and with Darwin in 1922 (Stolzenburg, 1984, 13–19).
Slater’s concept of virtual radiation emitted while an atom is in a stationary
state fit nicely with a number of ideas Bohr had been mulling over for some
time, especially with the tentative ideas developed in the context of dispersion
theory about the mechanism of emission and absorption of radiation by atoms
(see sec. 2.1).

Even though Slater had been opposed to giving up strict conservation of energy
and momentum, the junior co-author of BKS ended up defending the theory
with the zeal of the converted. In a lengthy paper signed December 1, 1924,
and published in the April 1925 issue of The Physical Review, he tried to work

82 See Slater to his mother, November 8, 1923 (quoted in Dresden, 1987, 161); Slater
to Kramers, December 8, 1923 (AHQP). For discussions of Slater’s idea, see (Klein,
1970, 23), (Stuewer, 1975, 291–294), (Hendry, 1981, 213–214), (Stolzenburg, 1984,
6–11), and (Darrigol, 1992, 218–219).
83 Slater was probably unaware that Einstein and Louis de Broglie (1892–1987) had
already made similar suggestions (Hendry, 1981, 199; Darrigol, 1992, 218).
84 See also (Bohr, Kramers, and Slater, 1924, 160).
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out a “consistent detailed theory of optical phenomena” based on the BKS
theory (Slater, 1925a, 395). 85 In the introduction of the paper, he presents
the dilemma that led him to embrace Bohr’s statistical conservation laws. 86

The problem, he argues, is that

in the quantum theory the energy of atoms must change by jumps; and
in the electromagnetic theory the energy of a radiation field must change
continuously . . . Two paths of escape from this difficulty have been followed
with more or less success. The first is to redefine energy [i.e., to adopt
Einstein’s light-quantum hypothesis]; the second to discard conservation.
Optical theory on [the first interpretation] would be a set of laws telling in
what paths the quanta travel . . . [One way to do this is] to set up a sort of
ghost field, similar to the classical field, whose function was in some way to
guide the quanta. For example, the quanta might travel in the direction of
Poynting’s vector in such a field. The author was at one time of the opinion
that this method was the most hopeful one for solving the problem . . . The
other direction of escape from the conflict between quantum theory and
wave theory has been to retain intact the quantum theory and as much of
the wave theory as relates to the field, but to discard conservation of energy
in the interaction between them (Slater, 1925a, 396–397).

Slater then sketches some difficulties facing this second approach, but makes
it clear that this is the approach he now favors:

An attempt was made by the writer, in a note to Nature [Slater, 1924], en-
larged upon in collaboration with Bohr and Kramers [BKS], to contribute
slightly to the solution of these difficulties. In the present paper, the sugges-
tions made in those papers are developed into a more specific theory (ibid.,
398).

Slater then proceeds to describe more carefully how to picture the interaction
between matter and radiation in the BKS theory and makes it clear that the
proposed mechanism is incompatible with strict energy conservation. Accord-
ing to Slater, the “one . . . essentially new” suggestion of BKS (note that he

85 Slater presented this work at a meeting of the American Physical Society in Wash-
ington, D.C., in December 1924 (Slater, 1925b). At this same meeting, Van Vleck
(1925) talked about (Van Vleck, 1924b,c) and Breit (1925) talked about (Breit,
1924a). The AHQP contains some correspondence between Slater and Van Vleck
regarding this meeting and regarding (Slater, 1925a) (Slater to Van Vleck, Decem-
ber 8, 1924; Van Vleck to Slater, December 15, 1924). Slater sent a copy of his
paper to Bohr in December 1924 and defended his elaboration of the BKS theory
in a letter to Bohr of January 6, 1925 (Bohr, 1972–1996, Vol. 5, 65–66).
86 See also the brief discussion of the BKS theory in (Van Vleck, 1926a, 285–286),
the Bulletin for the NRC, written after the decisive experimental refutation of the
theory.
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does not claim credit for the concept of virtual oscillators) was:

that the wavelets sent out by an atom in connection with a given transition
were sent out, not as a consequence of the occurrence of the transition, but
as a consequence of the existence of the atom in the stationary state from
which it could make that transition. 87 On this assumption, the stationary
state is the time during which the atom is radiating or absorbing; the tran-
sition from one state to another is not accompanied by radiation, but so far
as the field is concerned, merely marks the end of the radiation or absorp-
tion characteristic of one state, and the beginning of that characteristic of
another. The radiation emitted or absorbed during the stationary state is
further not merely of the particular frequency connected with the transition
which the atom is going to make; it includes all the frequencies connected
with all the transitions which the atom could make . . . Although the atom
is radiating or absorbing during the stationary states, its own energy does
not vary, but changes only discontinuously at transitions . . . It is quite ob-
vious that the mechanism becomes possible only by discarding conservation
(ibid., 397–398).

On the next page, Slater inserts a disclaimer similar to the ones by Van Vleck
and Kramers quoted above:

It must be admitted that a theory of the kind suggested has unattractive
features; there is an apparent duplication between the atoms on the one
hand, and the mechanism of oscillators producing the field on the other.
But this duplication seems to be indicated by the experimental facts, and
it is difficult at the present stage to see how it is to be avoided (ibid., 399).

At least for the time being, Slater had turned his back on Einstein’s light
quanta and was completely sold on the highly problematic BKS theory. 88

BKS has often been portrayed as Bohr’s last stand against light quanta af-
ter the Compton effect had finally convinced most other physicists that they
were unavoidable (Klein, 1970, 3). Upon his return from a trip to Canada
and the USA in late 1923, Bohr wrote ruefully to his old Manchester mentor
Rutherford:

In Chicago . . . I met Michelson who I believe found in me a more conservative
scientist than he had expected, at any rate decidedly more so than the

87 Note the similarity with the comments of Bohr to Ladenburg quoted in the pre-
ceding section: “the quantum jumps are not the direct cause of the absorption of
radiation, but . . . represent an effect which accompanies the continuously disperging
(and absorbing) effect of the atom on the radiation” (Bohr, 1972–1996, Vol. 5, 400).
88 For detailed criticism of the physics of the BKS theory, see (Dresden, 1987, 178–
185).
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younger school of American physicists who, as the Comptons [Arthur H.
and Karl T. (1887–1954)], notwithstanding their great achievements, take
views simply horrifying for a man who spend [sic] his life in studying the
most refined interference phenomena and for whom the wave theory is a
creed (Bohr, 1972–1996, Vol. 5, 6).

In the BKS theory the Compton effect is explained without light quanta.
The frequency shift between incoming and scattered X-rays is attributed to
a Doppler shift in the X-ray wave fronts instead. Compton (1923), it seems,
considered this possibility, but did not pursue it because, as he showed in
the paper in which he introduced the effect now named after him, the re-
coil velocity needed to get the Doppler shift to come out right is different
from the recoil velocity needed to ensure the conservation of energy and mo-
mentum in the process. Compton naturally assumed that these two velocities
had to be the same since in both cases it is the electron that is doing the
recoiling. The BKS theory, however, has room for two different recoil veloci-
ties, one for the electron, one for the orchestra of virtual oscillators associated
with it. 89 The Compton effect can be interpreted as a Doppler shift if the
appropriate recoil velocity is assigned to the virtual oscillators. Energy and
momentum are conserved, at least statistically, averaged over many electrons
involved in Compton scattering, if the appropriate recoil velocity is assigned
to the electrons themselves. Bohr and his co-authors wasted few words on the
justification of this startling maneuver:

That in this case the virtual oscillator moves with a velocity different from
that of the illuminated electrons themselves is certainly a feature strikingly
unfamiliar to the classical conceptions. In view of the fundamental depar-
tures from the classical space-time description, involved in the very idea of
virtual oscillators, it seems at the present state of science hardly justifiable
to reject a formal interpretation as that under consideration as inadequate
(Bohr, Kramers, and Slater, 1924, 173).

This is almost as bad as pieces of glass dragging along different amounts of
ether for different colors of light in early-19th-century ether theory!

The BKS theory was decisively refuted in experiments by Walther Bothe
(1891–1957) and Hans Geiger (1882–1945) in Berlin and by Compton and
Alfred Walter Simon in Chicago. These experiments showed that energy-
momentum is strictly conserved in Compton scattering (i.e., event by event)
and not just statistically (Stuewer, 1975, 299–302; Stolzenburg, 1984, 75–80).

89 What Compton (1923, 487) actually said in his paper is very suggestive of this
option: “It is clear . . . that so far as the effect on the wave-length is concerned, we
may replace the recoiling electron by a scattering electron” with an “effective veloc-
ity” different from that of the recoiling electron (quoted and discussed in Stuewer,
1975, 230).
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The experiments were begun shortly after the BKS paper was published (see
Bothe and Geiger, 1924), but the final verdict did not come in until the follow-
ing year. Bothe and Geiger (1925a,b) published their results in April 1925. The
paper by Compton and Simon (1925) is signed June 23, 1925, and appeared in
September 1925. 90 On April 17, 1925, Geiger sent Bohr a letter forewarning
him of the results of his experiments with Bothe. When Geiger’s letter arrived
in Copenhagen four days later, Bohr was in the process of writing to Ralph H.
Fowler (1889–1944). In a postscript to his letter, Bohr wrote: “there is noth-
ing else to do than to give our revolutionary efforts as honourable a funeral
as possible” (Stuewer, 1975, 301).

When Slater found out about the experimental refutation of the BKS theory,
he dashed off another letter to Nature (dated July 25, 1925), announcing that
he had changed his mind once more: “The simplest solution to the radiation
problem then seems to be to return to the view of a virtual field to guide
corpuscular quanta” (Slater, 1925c). Kramers and Bohr concurred: “we think
that Slater’s original hypothesis contains a good deal of truth.” 91 Slater thus
reverted to the position that, as he reminds the reader, he had been talked
out of by Bohr and Kramers. He also noted that Swann had argued for this
view during the December 1924 meeting of the American Association for the
Advancement of Science, unaware that he, Slater, had been thinking along
the same lines. 92 The following year, Bohr mentioned in passing in a letter to
Slater that he had “a bad conscience in persuading you to our view.” Slater
told him not to worry about it. 93

The way in which the BKS paper had come to be written, however, had
left Slater with a bitter taste in his mouth (Schweber, 1990, 350–356). His
disenchantment with Copenhagen shines through in the letter to Van Vleck,
written on his way back to the United States, from which we quoted earlier
(see note 15). Off the coast of Nantucket, a few hours before his ship—The
Cunard R.M.S. “Lancastria”—docked in New York, he wrote:

Don’t remember just how much I told you about my stay in Copenhagen.

90 Stuewer (1975, 301) draws attention to a footnote in this paper that makes it clear
that the experiment had been discussed even before Slater’s arrival in Copenhagen:
“The possibility of such a test was suggested by W. F. G. Swann in conversation
with Bohr and one of us [Compton] in November 1923” (Compton and Simon, 1925,
290, note 6). Swann, the reader may recall, had just started in Chicago that fall,
leaving the vacancy in Minnesota that was filled by Breit and Van Vleck (see sec.
1.2).
91 Kramers to Urey, July 16, 1925, quoted by Stolzenburg (1984, 86).
92 Cf. (Swann, 1925). See (Stuewer, 1975, 321–322) for discussion of Swann’s pro-
posal.
93 Bohr to Slater, January 28, 1926; Slater to Bohr, May 27, 1926 (Bohr, 1972–1996,
Vol. 5, 68–69).
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The paper with Bohr and Kramers was got out of the way the first six weeks
or so—written entirely by Bohr and Kramers. That was very nearly the only
paper that came from the institute at all the time I was there; there seemed
to be very little doing. Bohr does very little and is chronically overworked
by it . . . Bohr had to go on several vacations in the spring, and came back
worse from each one. 94

The second sentence of this passage is quoted by Dresden (1987, 165) in
the course of his detailed discussion of Slater’s reaction to his experiences
in Copenhagen. In his AHQP interview, Slater was particularly down on Bohr
and his institute. When he found out afterwards that Copenhagen would be
one of the depositories for the AHQP materials, he wrote to Kuhn urging him
to keep the interview out of the copy to be sent to Denmark. 95

Initially, Slater was angry with both Bohr and Kramers, but his attitude
toward the latter later softened (Dresden, 1987, 168–171). This was probably
under the influence of his wife, fellow-physicist Rose Mooney (1902–1981)
(Dresden, 1987, 527–528). Before Ms. Mooney became Mrs. Slater in 1948,
she had been close to Kramers, whom she had met at a summer school in
Michigan in 1938. The two of them almost certainly had an affair. Kramers was
profoundly unhappy in his marriage to Anna ‘Storm’ Petersen, a Danish singer
he had met in artistic circles in Copenhagen and married in 1920 after she
got pregnant. 96 In one of the most memorable passages of his book, Dresden
(1987, 289–295; see also 170–171) reveals that Kramers had told Storm many
years after the fact that he himself had on at least one occasion been railroaded
by Bohr. Kramers apparently thought of the Compton effect around 1920, well
before Compton and Debye did. Bohr, however, detested the notion of light
quanta so much that he worked on Kramers until he recanted. According to
what Storm told Dresden, Kramers had to be hospitalized after one of these
sessions with Bohr! Bohr’s victory was complete. Even more strongly than
Slater in the case of BKS a few years later, Kramers joined Bohr’s crusade

94 Slater to Van Vleck, July 27, 1924 (AHQP). On the very same day, Slater wrote
to Bohr, thanking him for his “great kindness and attention to me while I was in
Copenhagen. Even if we did have some disagreements, I felt very well repaid for my
time there, and I look back to it very pleasantly” (Bohr, 1972–1996, Vol. 5, 494).
This sounds disingenuous in view of his comments to Van Vleck, but Slater had also
been very positive about Bohr writing to his teacher Bridgman on February 1, 1924
(Schweber, 1990, 354).
95 Slater to Kuhn, November 22, 1963, included in the file on Slater in the AHQP.
96 Kramers was on the rebound at the time from the on-again-off-again relation-
ship with his Dutch girlfriend, Waldi van Eck. Dresden’s description of Kramers’
relationship with van Eck (not to be confused with Van Vleck) conjures up the
image of a virtual oscillator: “no commitments were made, no decisions were taken,
the relationship was never defined, it was certainly never consummated, nor ever
terminated” (Dresden, 1987, 525).
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against light quanta with “all the passion of a repentant convert” (Dresden,
1987, 171). Slater may well have found out about this episode from his wife,
Kramers’ former mistress. Whether or not he did, in his autobiography, as
Dresden (1987, 528) points out, Slater (1975, 233) refers to his BKS co-author
as “my old friend Kramers.”

Virtual oscillators survived the demise of the BKS theory and happily lived
on in the dispersion theory from which they originated. As Van Vleck empha-
sizes in his NRC Bulletin, written after the Bothe-Geiger and Compton-Simon
experiments, the rejection of the BKS theory and the acceptance of the light-
quantum hypothesis

does not mean that Slater’s concept of virtual oscillators is not a useful one.
We may assume that the fields which guide the light-quants come from a
hypothetical set of oscillators rather than from the actual electron orbits of
the conventional electrodynamics. 97 In this way the appearance of the spec-
troscopic rather than the orbital frequency in dispersion can be explained,
and the essential features of the virtual oscillator theory of dispersion . . . can
still be retained. There is an exact conservation of energy between the atoms
and the actual corpuscular light-quants, but only a statistical conservation
of energy between the atoms and the hypothetical virtual fields (Van Vleck,
1926a, 286–287).

Since virtual oscillators made their official debut in the context of BKS, the
Kramers dispersion theory has been portrayed, in most older and even in some
more recent historical literature, as an application of the BKS theory. Max
Jammer (1966, 184), for instance, writes that the BKS theory “was the point
of departure of Kramers’s detailed theory of dispersion.” And Mara Beller
(1999, 23) still characterized (Kramers and Heisenberg, 1925) as a paper that
“spelled out, in a rigorous mathematical way, the ideas only roughly outlined
in the presentation of Bohr, Kramers, and Slater.” Beller should have known
better given that Dresden (1987, 144–146, 220–221) had already set the record
straight. Darrigol (1992, 225) duly emphasizes that the Kramers dispersion
theory was developed before and independently of the BKS theory. Even before
Dresden, Hendry (1981) had already made it clear that BKS got its virtual
oscillators from dispersion theory—the Ersatz-oscillators of (Ladenburg and
Reiche, 1923)—and not the other way around.

To a large extent, Kramers and Slater have themselves to blame for the
widespread impression that dispersion theory and virtual oscillators were bound
up with BKS. As we saw above, (Slater, 1925a) is presented explicitly as an
elaboration of the BKS theory. Kramers also presented his dispersion the-
ory as an application of the BKS theory, both in his Nature notes (Kramers,

97 At this point, the following footnote is appended: “This viewpoint has been ad-
vocated by Slater during the printing of the present Bulletin. See [Slater, 1925a].”
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1924a,b) and in (Kramers and Heisenberg, 1925). 98 In the abstract of their
paper, Kramers and Heisenberg (1925, 223) announce that

The arguments are based throughout on the interpretation of the connection
of the wave radiation of the atom with the stationary states advocated in a
recent paper by Bohr, Kramers and Slater, and the conclusions, should they
be confirmed, would form an interesting support for this interpretation. 99

In contrast, Van Vleck (1924b,c) used virtual oscillators without buying into
the rest of the BKS theory.

The case of a closely related paper by Max Born (1924) is more ambiguous.
At the beginning of the paper, Born writes:

Recently . . . considerable progress has been made by Bohr, Kramers and
Slater on just this matter of the connection between radiation and atomic
structure . . . How fruitful these ideas are, is also shown by Kramers’ success
in setting up a dispersion formula . . . In this situation, one might consider
whether it would not be possible to extend Kramers’ ideas, which he ap-
plied so successfully to the interaction between radiation field and radiating
electron, to the case of the interaction between several electrons of an atom
. . . The present paper is an attempt to carry out this idea (Born, 1924,
181–182).

A footnote appended to this passage reads: “By a happy coincidence I was able
to discuss the contents of this paper with Mr. Niels Bohr, which contributed
greatly to a clarification of the concepts.” Bohr had visited Born and Heisen-
berg in Göttingen in early June 1924 (Cassidy, 1991, 177–179). Heisenberg
had already told Born all about the BKS theory and Born had expressed his
enthusiasm for the theory in a letter to Bohr of April 16, 1924. 100 Bohr’s visit
must have further solidified this enthusiasm. A week later, however, Einstein
passed through Göttingen and trashed the BKS theory. 101 In a letter to Born
and his wife Hedi (1892–1972) of April 29, 1924, Einstein had already delivered
his oft-quoted put-down that, should BKS turn out to be correct, he “would
rather have been a shoemaker or even an employee in a gambling casino than
a physicist” (Klein, 1970, 32). As a result of Einstein’s onslaught, Born hedged

98 In addition, Kramers defended the BKS theory is several unpublished manuscripts
written in 1924–1925, which have been preserved (Stolzenburg, 1984, 41).
99 We use the translation of Stolzenburg (1984, 87) at this point, which is more
accurate than the standard translation in (Van der Waerden, 1968, 223).
100See (Bohr, 1972–1996, Vol. 5, 299), discussed in (Mehra and Rechenberg, 1982–
2001, Vol. 2, 143).
101See Heisenberg to Pauli, June 8, 1924 (Pauli, 1979, Doc. 62). For discussions of
Einstein’s objections to BKS, see (Klein, 1970, 32–35), (Wasserman, 1981, 255–263),
and (Stolzenburg, 1984, 24–28, 31–34).
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his bets and did not throw in his fate with the more controversial aspects of
the BKS theory (see Mehra and Rechenberg, 1982–2001, Vol. 2, 144; Cassidy,
1991, 179). At the beginning of sec. 3 of his paper, he writes:

it will be profitable to make use of the intuitive ideas, introduced by Bohr,
Kramers and Slater . . . but our line of reasoning will be independent of the
critically important and still disputed conceptual framework of that the-
ory, such as the statistical interpretation of energy and momentum transfer
(Born, 1924, 189). 102

Born, however, continued to be a true believer in BKS and took the collapse
of the theory harder than Bohr himself. On April 24, 1925, he wrote to Bohr:

Today Franck showed me your letter [of April 21, 1925, the day that Bohr
had received word from Geiger about the results of the Bothe-Geiger exper-
iment] . . . which interested me exceedingly and indeed almost shocked me,
because in it you abandon the radiation theory that obeyed no conservation
laws (Bohr, 1972–1996, Vol. 5, 84).

In contrast to Born, Pauli, in a letter to Kramers of July 27, 1925, 103 called
the demise of BKS “a magnificent stroke of luck” (ein ungeheures Glück). As is
stressed by Darrigol (1992, 244), Pauli clearly recognized that dispersion the-
ory remained unaffected. In the same letter, he alerted Kramers to a footnote
in (Pauli, 1925, 5), which emphasizes

that the formulas of [Kramers and Heisenberg, 1925] used here are inde-
pendent of the special theoretical interpretation concerning the detailed
description of the radiation phenomena in the quantum theory taken as a
basis by them [i.e., the BKS theory], since these formulas only apply to
averages over a large number of elementary phenomena.

Pauli wanted to distance himself from the notion put forward by Kramers and
Heisenberg (1925) in the abstract of their paper (the passage quoted above)
that evidence for their dispersion theory would also count as evidence for the
BKS theory. He sneered:

if I had not added the footnote in question, it would also have been true
that the conclusions of my paper, if they should be confirmed, ‘would form
an interesting support for this interpretation’ [this is a direct quote from

102This illustrates the importance of what Beller (1999) has called the “dialogical
approach” to the history of quantum mechanics (an approach adopted avant la
lettre by Hendry [1984]): to resolve the tension between the two quoted passages in
Born’s paper, it is important to be attuned to the voices of both Bohr and Einstein
in his text.
103(Pauli, 1979, 232–234) or (Bohr, 1972–1996, Vol. 5, 87).
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the abstract of Kramers and Heisenberg, 1925]. This impression I had, of
course, to counteract! (Pauli to Kramers, July 27, 1925).

This letter was written after Heisenberg’s Umdeutung paper, which was much
more to Pauli’s liking. In cruel Pauli fashion, he proceeded to berate Kramers
for pushing the BKS theory:

I now feel less lonely than about half a year ago when (spiritually and
spatially) I found myself rather alone between the Scylla of the number-
mystical Munich school and the Charybdis of the reactionary Copenhagen
Putsch, propagandized by you to fanatical excesses! Now I only hope that
you will no longer delay the process of recovery of Copenhagen physics
which, as a result of Bohr’s strong sense of reality, cannot fail to take place
. . . Finally, kind regards to your wife, to whom I let the following be said:
every time you—either out loud or to yourself—throw down all the curses
of the Deuteronomy upon those who much prefer freedom of thought over
any kind of “true faith”, she shall sing merry tunes of spring, beauty and
love to you! (ibid.).

Pauli apparently did not know at the time about the earlier clash between
Bohr and Kramers over light quanta. And when Bohr commiserated with him
a few years later about Kramers’ lingering bitterness over this episode, Pauli
appears to have had little sympathy for Kramers (Dresden, 1987, 294). 104

Despite his venom, however, Pauli’s animus against Kramers, it seems, did
not run all that deep. A few months after the scathing letter from which we
quoted above, he told another correspondent (Stolzenburg, 1984, 91)

[m]any greetings also to Kramers, whom I am very fond of after all, es-
pecially when I think of his beautiful dispersion formula (Pauli to Kronig,
October 9, 1925).

There would have been far less confusion about the relation between disper-
sion theory and BKS, if Kramers had published his dispersion theory before
the BKS paper, especially if he had done so availing himself of the Ladenburg-
Reiche Ersatz-oscillators. As it happened, (Kramers, 1924a) was only submit-
ted to Nature on March 25, 1924, nearly two months after the BKS paper. This
note moreover contains only the briefest of hints as to how Kramers found his
dispersion formula. It was not until July 22, 1924, that Kramers submitted a
second note to Nature with at least an outline of the derivation of the formula.
And he did not get around to publishing the full derivation until his paper

104Pauli later told his colleague Res Jost (1918–1990) at the ETH in Zurich that he
had consoled Bohr by arguing that discovering the Compton effect was hardly an
impressive feat since both Compton and Debye had done so independently of one
another.
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with Heisenberg in early 1925. 105 The basic results, however, were in place
by the time Slater arrived in Copenhagen in December 1923. Slater’s letter to
Van Vleck, from which we quoted above, continues:

Kramers hasn’t got much done, either. You perhaps noticed his letter to
Nature on dispersion [Kramers, 1924a]; the formulas & that he had before
I came, although he didn’t see the exact application; and except for that
he hasn’t done anything, so far as I know. They seem to have too much
administrative work to do. Even at that, I don’t see what they do all the
time. Bohr hasn’t been teaching at all, Kramers has been giving one or two
courses (Slater to Van Vleck, July 27, 1924 [AHQP]).

Van Vleck had to deal with the effects of Kramers’ procrastination later in
1924. He finished his two-part paper on the application of the correspondence
principle to the interaction of matter and radiation in June 1924. He had only
seen Kramers’ first note to Nature at that point. It was not clear on the basis
of this short report exactly what Kramers had and had not yet done. Van
Vleck thought he could extend some of Kramers’ results. As he explained to
Kramers in a letter of September 22, 1924 (AHQP):

[my] article was ready to send to the printer about the time we received the
copy of Nature containing your dispersion formula. In your note [Kramers,
1924a] I did not understand you to state how generally you had verified the
asymptotic connection with the classical dispersion from the actual orbit,
and it immediately occurred to me that this question could easily be inves-
tigated by the perturbation theory method I had previously developed in
connection with what I call the “correspondence principle for absorption”.
I therefore inserted two sections (# 6 and # 15 . . . ) showing that your for-
mula merged into the classical one [in the limit of high quantum numbers].
Inasmuch as the classical dispersion formula had apparently not been devel-
oped for the general non-degenerate multiply periodic orbit, and as you did
not give this in your note to Nature, I conjectured that you had verified the
asymptotic connection only in special cases, such as a linear oscillator, so
that my computations on dispersion would not be a duplication of what you
had done. However, while visiting at Cambridge, Mass. last week I learned
from Dr. Slater that your calculation of the asymptotic connection was al-
most identical with my own in scope and generality. I have therefore altered
the proof of my Physical Review article to include a note [Van Vleck 1924b,
345] stating that you have also established the correspondence theorem in
the general case.

The independent derivation of Kramers’ results by Van Vleck, who certainly

105This paper was completed over the Christmas break of 1924, received by
Zeitschrift für Physik on January 5, 1925, and published two months later (Mehra
and Rechenberg, 1982–2001, Vol. 2, 181).
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was not under the spell of the BKS theory, underscores that dispersion theory
and virtual oscillators were independent of the BKS theory.

As long as we think of the Kramers dispersion theory as part and parcel of
BKS, we see matrix mechanics as replacing a decisively refuted theory. Once
we recognize that the Kramers dispersion theory was developed before and
independently of BKS, we see matrix mechanics growing naturally out of an
eminently successful earlier theory. The BKS theory and its refutation by the
Bothe-Geiger and Compton-Simon experiments are then seen as a sideshow
distracting from the main plot line, the transition from dispersion theory to
matrix mechanics. A corollary to this last observation is that the acceptance
of the light-quantum hypothesis was largely irrelevant to the development of
matrix mechanics. Compton scattering provided convincing evidence for the
light-quantum hypothesis and against the BKS theory, but it had no bearing
on dispersion theory. This is not to deny that the light-quantum hypothesis
indirectly played a role in dispersion theory: the work of Ladenburg, Kramers,
and Van Vleck crucially depends on Einstein’s A and B coefficients, the deriva-
tion of which of course did involve light quanta.

After having spent most of this section trying to disentangle dispersion theory
from BKS, we want to draw attention to one problem, common to these two
theories, that may have played a role in the transition to matrix mechanics.
This is the troublesome feature of the BKS explanation of the Compton ef-
fect that the electron and the virtual oscillators associated with it recoil with
different velocities. This problem carries over to the dispersion theory based
on the dual representation of atoms in terms of classical orbits and virtual
oscillators, as is acknowledged, if only in passing, by Kramers and Heisen-
berg (1925, 229): “We shall not discuss in any detail the curious fact that
the centre of these spherical waves moves relative to the excited atom.” This
sharpened the problem of the Bohr-Sommerfeld orbits in the theory. Not only
were they responsible for the discrepancy between orbital frequencies and ra-
diation frequencies, they also make it harder to picture an atom in space and
time. After all, the system of electron orbits does not even move in concert
with its orchestra of virtual oscillators.

Edward MacKinnon (1977, 1982) has argued forcefully that the resulting prob-
lem of combining these different pictures of the atom into one coherent pic-
ture forced Heisenberg to make a choice between them (see also Beller 1999,
23). Since the orchestra of virtual oscillators carries all the physical informa-
tion about the system while the electron orbits are completely unobservable,
the choice is obvious. MacKinnon (1977, 138) has gone as far as describing
Heisenberg’s Umdeutung paper as proposing a theory of virtual oscillators.
Heisenberg, MacKinnon (1977, 155–156) suggests, merely suppressed all talk
of virtual oscillators as a response to Pauli’s objections—despite his earlier
assurances to Bohr on this score—to the “virtualization” of physics. Einstein
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may have had a hand in this as well. Both Heisenberg and Pauli got an earful
from Einstein on the BKS theory, Heisenberg, as we saw above, in Göttingen
in June 1924, Pauli during the annual meeting of the Gesellschaft Deutscher
Naturforscher und Ärzte in Innsbruck in September 1924. 106 As MacKinnon
points out, Heisenberg (1925a) nonetheless made extensive use of virtual os-
cillators in a paper on the polarization of fluorescence radiation published a
few months before the Umdeutung paper.

MacKinnon’s reconstruction would also explain Heisenberg’s later strikingly
positive assessment of BKS. When Heisenberg first read the BKS paper, he
was not impressed: “Bohr’s paper on radiation is certainly very interesting;
but I do not really see any fundamental progress.” 107 He subsequently warmed
to the theory, writing to Copenhagen on April 6, 1924 that he hoped Bohr
had meanwhile convinced Pauli. 108 To Sommerfeld he wrote on November
18, 1924: “Maybe Bohr’s radiation theory is a most felicitous [sehr glücklicke]
description of this dualism [i.e., the wave-particle duality of radiation] after
all” (Sommerfeld, 2004, 174, quoted in Wasserman, 1981, 251). Five years
later, Heisenberg was praising BKS effusively:

This investigation represented the real high point in the crisis of quantum
theory, and, although it could not overcome the difficulties, it contributed,
more than any other work of that time, to the clarification of the situation in
quantum theory (Heisenberg, 1929, 492; translated and quoted in Stuewer,
1975, 291).

And thirty years later, Heisenberg (1955, 12) remembered the BKS theory as
“the first serious attempt to resolve the paradoxes of radiation into rational
physics” (quoted in Klein, 1970, 37). The profuse praise of 1929 and 1955
becomes understandable, if we assume that what Heisenberg was praising in
retrospect was not the BKS theory as a whole but mainly the notion of virtual
oscillators, which he had put to good use in (Heisenberg, 1925a), in (Kramers
and Heisenberg, 1925), and, if MacKinnon is right, in his Umdeutung paper
as well.

What speaks in MacKinnon’s favor is that Heisenberg saw a draft of his 1977
paper and apparently approved of it (cf. MacKinnon 1977, 149, note 29). We
have to keep in mind, however, that we are dealing here with recollections
about fifty years after the fact. Then again, it is hardly far-fetched to talk

106See Pauli to Bohr, October 2, 1924 (Pauli, 1979, Doc. 66), quoted and discussed
in (Wasserman, 1981, 260–263).
107Heisenberg to Pauli, March 4, 1924 (Pauli, 1979, Doc. 57); quoted by Dresden
(1987, 202) and Wasserman (1981, 250).
108See (Bohr, 1972–1996, Vol. 5, 354–355), cited by David Cassidy (1991, 176) to
support his claim that “by the end of his March 1924 visit to Copenhagen, Werner
was a convert.”

49



about matrix mechanics in terms of virtual oscillators. In fact, Landé (1926,
456) introduced the phrase “virtual orchestras” to describe not BKS but ma-
trix mechanics! 109 The imagery, if not exactly the language, of an “orchestra
of virtual oscillators” was also used in early popular expositions of matrix
mechanics. In a popular book of the 1930s that went through many editions
and was endorsed by Max Planck in a short preface, Ernst Zimmer wrote: 110

The state of an atom should no longer be described by the unobservable
position and momentum of its electrons, but by the measurable frequen-
cies and intensities of its spectral lines . . . Regardless of the nature of the
real musicians who play the optical music of the atoms for us, Heisenberg
imagines assistant musicians [Hilfsmusiker]: every one plays just one note
at a certain volume. Every one of these musicians is represented by a math-
ematical expression, qmn, which contains the volume and the frequency of
the spectral line as in expressions in acoustics familiar to physicists. These
assistant musicians are lined up in an orchestra [Kapelle] according to the
initial and final states n and m of the transition under consideration. The
mathematician calls such an arrangement a “matrix” (Zimmer, 1934, 161–
162).

Zimmer’s Kapelle der Hilfsmusiker was clearly inspired by Landé’s Ersatzor-
chester der virtuellen Oszillatoren. Virtual oscillators thus not only survived
the demise of the BKS theory but also the transition to matrix mechanics. In
fact, as we shall see in sec. 5.1, the features captured by the notion of virtual
oscillators can still readily be identified in the formalism of modern quantum
mechanics.

109Landé had worked with Heisenberg in 1924 (Cassidy, 1991, 177), resulting in a
joint paper (Landé and Heisenberg, 1924).
110We are grateful to Jürgen Ehlers for drawing our attention to Zimmer’s book.
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3 Van Vleck and the application of the correspondence principle
to the interaction of matter and radiation

In the two-part study that forms the focal point of our paper, Van Vleck
(1924b,c) explored in a systematic and physically cogent fashion the implica-
tions of the correspondence principle for several aspects of the interaction of
matter and radiation. The paper is signed June 19, 1924 and appeared in the
October 1924 issue of The Physical Review. In this paper, Van Vleck gives
a detailed derivation of the correspondence principle for absorption, which
he had introduced in a short note in the Journal of the Optical Society in
America, signed April 7, 1924 (Van Vleck, 1924a). In addition, he thoroughly
examined the issues involved in connecting Einstein’s A and B coefficients
to features of classical electron orbits. Finally, as we mentioned in sec. 2.2,
he showed that, in the limit of high quantum numbers, Kramers’ quantum
formula for polarization merges with the classical formula for polarization in
arbitrary non-degenerate multiply-periodic systems.

In part I of his study, reproduced in (Van der Waerden, 1968), Van Vleck
(1924b) discussed the transition from quantum-theoretical expressions for
emission, absorption, and dispersion to corresponding classical expressions
that one expects to hold in the limit of high quantum numbers. It is only
in part II, not included in (Van der Waerden, 1968), that Van Vleck (1924c)
derives the classical expressions for absorption and dispersion of radiation by
a general non-degenerate multiply-periodic system, using standard methods
of canonical perturbation theory in action-angle variables. Van Vleck could
assume his audience to be thoroughly familiar with these techniques. This is
no longer true today. For the sake of clarity of exposition, we therefore invert
the order of Van Vleck’s own presentation.

In sec. 3.1, we present the basic elements of the canonical formalism in action-
angle variables and use it to rederive the classical formula (6) for the dipole mo-
ment of a charged one-dimensional simple harmonic oscillator. Though much
more complicated than the derivation given in sec. 2.1, this new derivation
has two distinct advantages. First, it suggests a way of translating the classi-
cal formula into a quantum formula with the help of Bohr’s correspondence
principle and Einstein’s A and B coefficients. Secondly, both the derivation of
the classical formula and its translation into a quantum formula can easily be
generalized to arbitrary non-degenerate multiply-periodic systems.

In sec. 3.2, we translate the classical formula for the dipole moment of a
simple harmonic oscillator into a quantum formula. In sec. 3.3, we similarly
convert classical formulae for emission and absorption by a simple harmonic
oscillator to the corresponding quantum formulae, Both the mathematical
manipulations and the physical interpretation are particularly transparent in
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the case of a simple harmonic oscillator, and Van Vleck himself frequently used
this example for illustrative purposes. The generalization of the various results
to arbitrary non-degenerate multiply-periodic systems, which is a primary
focus of Van Vleck’s paper, will be deferred to sec. 4.

3.1 Deriving the classical formula for the dipole moment of a simple har-
monic oscillator using canonical perturbation theory

In this subsection we rederive formula (6) for the dipole moment of a charged
one-dimensional simple harmonic oscillator, using canonical perturbation the-
ory in action-angle variables. Like Kramers, Van Vleck was a master of these
techniques in classical mechanics. As Van Vleck recalled fifty years after the
fact:

In 1924 I was an assistant professor at the University of Minnesota. On an
American trip, Ehrenfest gave a lecture there . . . [He] said he would like to
hear a colloquium by a member of the staff. I was selected to give a talk
on my “Correspondence Principle for Absorption” . . . I remember Ehrenfest
being surprised at my being so young a man. The lengthy formulas for
perturbed orbits in my publication on the three-body of the helium atom
[Van Vleck, 1922b] had given him the image of a venerable astronomer
making calculations in celestial mechanics (Van Vleck, 1974, 9). 111

We begin by reviewing some of the mathematical tools we need. 112 Con-
sider a classical Hamiltonian system with phase space coordinates (qi, pi),
i = (1, 2, . . . N) and Hamiltonian H(qi, pi), which does not explicitly depend
on time. Hamilton’s equations are

q̇i =
∂H

∂pi

, ṗi = −∂H

∂qi
. (10)

Consider a contact transformation (qi, pi) → (q′i, p′i) preserving the form of
Hamilton’s equations, in the sense that there exists a new Hamiltonian H ′

such that

111Van Vleck failed to conform to Ehrenfest’s image of a young physicist in another
respect. In an interview in 1973, “Van Vleck recalled, “I shocked Ehrenfest . . . when
I told him I liked popular music.” Ehrenfest, he said, “thought that was completely
irreconcilable with my having written any respectable papers.”” (Fellows, 1985, 54)
112This material is covered in standard graduate textbooks on classical mechanics,
such as (Goldstein, 1980), heavily influenced by (Born, 1925) (Goldstein, 1980, 429,
493, 540). We recommend (Matzner and Shepley, 1991).
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q̇′i =
∂H ′

∂p′i
, ṗ′i = −∂H ′

∂q′i
. (11)

Since Hamilton’s equations (10) and (11) must hold simultaneously, the vari-
ational principles

δ

t2∫
t1

(∑
i

piq̇
i −H(qi, pi)

)
dt = 0, δ

t2∫
t1

(∑
i

p′iq̇
′i −H ′(p′i, q

′i)

)
dt = 0 (12)

for arbitrary times t1 and t2 must also hold simultaneously. This implies that
the difference between the two integrands in eq. (12) must be a total time
derivative(∑

i

piq̇
i −H(qi, pi)−

∑
i

p′iq̇
′i + H ′(p′i, q

′i)

)
dt = dF, (13)

which will not contribute to the variation of the action. The apparent depen-
dence of F on the 4N + 1 variables (qi, pi, q

′i, p′i, t) can be reduced to 2N + 1
variables via the equations for the contact transformation (qi, pi) → (q′i, p′i).
If we choose to write F as a function of the initial and final coordinates,
F = F (qi, q′i, t), then the partial derivatives of F can be read off directly from
eq. (13):

∂F

∂t
= H ′ −H,

∂F

∂qi
= pi,

∂F

∂q′i
= −p′i. (14)

By solving (at least in principle!) the second of these three equations for q′i

as a function of (qi, pi), and then substituting the result in the third to obtain
p′i, we see that the function F encodes the full information of the transforma-
tion (qi, pi) → (q′i, p′i). This function is called the generating function of the
transformation. Given F the form of the new Hamiltonian H ′ can be obtained
(again, in principle!) from the first of eqs. (14).

A special case of great interest occurs when the generating function F can be
chosen so that the resulting Hamiltonian is independent of the new coordinates
q′i (which are then called ignorable). Hamilton’s equations then immediately
imply that the associated momenta p′i are time-independent, and that the new
coordinates q′i are linear in time. In this circumstance the new momenta are
usually called action variables—the notation Ji is conventional for these—
while the new coordinates are dubbed angle variables, with the conventional
notation wi.

To illustrate the above with a concrete example, which we shall be using
throughout this section, consider a one-dimensional simple harmonic oscillator
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with Hamiltonian: 113

H =
p2

2m
+

1

2
mω2

0q
2. (15)

Consider the transformation induced by

F =
1

2
mω0q

2 cot q′. (16)

This function does not explicitly depend on time, so H ′ = H (see eq. (14)).
Eq. (14) also tells us that

p =
∂F

∂q
= mω0q cot q′, p′ = −∂F

∂q′
=

1

2
mω0q

2 csc2 q′. (17)

From the latter equation it follows that q2 = (2p′/mω0) sin2 q′ or that

q =

√
2p′

mω0

sin q′. (18)

Inserting this expression for q into the expression for p, we find

p =
√

2mω0p′ cos q′. (19)

Substituting eqs. (18)–(19) for q and p into eq. (15) we find

H = ω0p
′. (20)

Since H ′ = H, this means that the new coordinate variable q′ is ignorable, as
desired. Hamilton’s equations for (q′, p′) are:

q̇′ =
∂H

∂p′
= ω0, ṗ′ = −∂H ′

∂q′
= 0, (21)

113A short digression on the (almost inevitable) notational confusions lurking in this
subject is in order. We shall continue to use the conventional notation ω to denote
angular frequencies, with the ordinary frequency (reciprocal period) denoted by
the Greek letter ν. Unfortunately, Van Vleck uses ω to denote ordinary frequency!
Moreover, there is the embarrassing similarity of the angle variables wi to the fre-
quencies ωi. Also, there is the need to distinguish between the frequencies of the
isolated mechanical system (ω0 = 2πν0 for the simple harmonic oscillator) and the
frequency of an applied electromagnetic wave, which we shall denote as ω = 2πν
throughout.
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from which it follows that q′ = ω0t+ε and that p′ = H/ω0 is time-independent.

Instead of the canonically conjugate variables (p′, q′) it is customary to employ
rescaled action/angle variables

J ≡ 2πp′, w ≡ 1

2π
q′, (22)

which reduce to J = H/ν0 and w = ν0t + ε (appropriately redefining the
arbitrary phase ε) for our one-dimensional oscillator.

The connection to the terminology action variable is easily seen in this exam-
ple. In this simple case, the action is defined as the area enclosed by a single
orbit of the periodic system in the two-dimensional phase space spanned by
the coordinates (p, q):

J =
∮

pdq (23)

(cf. eq. (1)). Inserting eqs. (18) and (19) into the integrand, we find

∮ (√
2mω0p′ cos q′

)
d

(√
2p′

mω0

sin q′
)

=

2π∫
0

2p′ cos2 q′dq′ = 2πp′, (24)

which is just the expression for J in eq. (22).

The result (18) represents, of course, the solution of the equation of motion
of the oscillator

q(t) = D cos 2πν0t = D cos 2πw, (25)

where we have chosen the phase shift ε to start the oscillator at maximum
displacement at t = 0, and where the amplitude is a function of the action
variable

D =

√
J

mπω0

. (26)

We now turn to our basic model for dispersion, i.e., a charged one-dimensional
simple harmonic oscillator subjected to the periodically varying electric field
of an electromagnetic wave. In sec. 2.1, we used elementary techniques of
classical mechanics to analyze this system (see eqs. (2)–(6)). Although such
methods are physically transparent, they depend on an explicit treatment of
the equations of motion of a specific and completely specified Hamiltonian.
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The same results can be obtained by the methods of canonical perturbation
theory, where general formulas can be obtained for the perturbation in the
coordinate(s) of the system completely independently of the specific nature of
the dynamics. As Van Vleck (1924c, 350) put it:

If we were to study the perturbations in the motion produced by the incident
wave purely with the aid of [Newton’s second law] it would be impossible to
make further progress without specializing the form of the potential function
[such as, e.g., 1

2
mω2

0q
2 in eq. (15)] . . . However, it is quite a different story

when we seek to compute the perturbations . . . in the “angle variables” w1,
w2, w3 and their conjugate momenta J1, J2, J3 . . . In fact by using them
rather than x, y, z, which is the essential feature of the present calculation,
the periodic properties of the system come to light even without knowing
the form of [the potential].

Using canonical perturbation theory in action-angle variables, we rederive eq.
(6) of sec. 2.1 for the polarization of a one-dimensional charged simple har-
monic oscillator. In sec. 4, we turn to the general case of an arbitrary non-
degenerate multiply-periodic system.

The Hamiltonian is now the sum of the Hamiltonian H0 given by eq. (15)
and a perturbative term Hint describing the interaction between the harmonic
oscillator and the electromagnetic wave: 114

H = H0 + Hint =
p2

2m
+

1

2
mω2

0x
2 + eEx cos ωt. (27)

The subscript ‘0’ in ν0 or ω0 refers to the characteristic frequency of the
unperturbed oscillator. Without subscript ν and ω refer to the frequency of
the external electric field.

Absent a perturbing field (E = 0, H = H0), we can write x(t) in terms of the
action-angle variables J and w = ν0t:

x(t) =
∑

τ=±1

Aτ (J)e2πiτw, (28)

where Aτ has to satisfy the conjugacy relation Aτ = A∗
−τ to ensure that x(t) in

eq. (28) is real (x(t) = x∗(t)). Note that we have changed notation somewhat

114As before, we assume that the electric field is in the direction of motion of the
oscillator (cf. eq. (3)). It follows from eq. (27) that the force F = −∂V/∂x of the
electric field on the charge is −eE cos ωt, in accordance with eq. (3) (recall that we
use e to denote the absolute value of the electron charge).
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compared to eq. (25). We returned to Cartesian coordinate notation (x instead
of q), and the amplitude has been redefined: 115

D = 2|Aτ |. (29)

The action-angle variables J = H0/ν0 and w = ν0t satisfy Hamilton’s equa-
tions (cf. eqs. (21)–(22)):

0 = −J̇ =
∂H0

∂w
,

∂H0

∂J
= ẇ = ν0. (30)

It is a special feature of the simple harmonic oscillator that the frequency
ν0 is independent of the amplitude of motion (and thereby of the action).
The generating function for the contact transformation from (x, p) to (w, J)
is time-independent (cf. eq. (16)), so eq. (14) implies that the old and new
Hamiltonians coincide in value (i.e., one simply reexpresses the original Hamil-
tonian in the new variables). Even with the perturbation turned on we shall
continue to use the same contact transformation, computing the perturbations
(∆w, ∆J) induced by the applied field in the action-angle variables (w, J) as
an expansion in E. These are not action-angle variables for the full Hamil-
tonian H0 + Hint, only for the unperturbed Hamiltonian H0 (cf. Van Vleck
1926a, 200–201).

Eventually, we are interested in the displacement ∆x in the particle coordinate
(to first order in E) induced by the applied field. To first order, ∆x is given
by

∆x =
∂x

∂J
∆J +

∂x

∂w
∆w. (31)

Using eq. (28) to evaluate ∂x/∂J and ∂x/∂w, we can rewrite this as:

∆x =
∑
τ

(
∂Aτ

∂J
∆J + 2πiτAτ∆w

)
e2πiτw. (32)

Assuming the external field to be switched on at time zero, the first-order
shifts ∆w and ∆J are given by:

∆J =

t∫
0

∆J̇dt, ∆w =

t∫
0

∆ẇdt. (33)

115Inserting Aτ = |Aτ |eiϕ into eq. (28), we find x(t) = (|Aτ |+ |A−τ |) cos (2πw + ϕ).
Since Aτ = A∗

−τ , |Aτ |2 = AτA
∗
τ is equal to |A−τ |2 = A−τA

∗
−τ . The phase factor ϕ

is immaterial.

57



where the integrands ∆J̇ and ∆ẇ are determined by Hamilton’s equations.

The perturbation in eq. (27) will induce a time-dependence in the action vari-
able, as Hamilton’s equation for the action variable in the presence of the
perturbing field now reads

J̇ = −∂H0

∂w
− eE

∂x

∂w
cos 2πνt = −eE

∂x

∂w
cos 2πνt. (34)

Note that we still have ∂H0/∂w = 0, so ∆J̇ = J̇ . At this point it is convenient
to go over to complex exponentials and replace cos 2πνt by 1

2
(e2πiνt + e−2πiνt).

Inserting eq. (28) into eq. (34), we find

∆J̇ = −πieE
∑

τ=±1

τAτ

(
e2πi(τw+νt) + e2πi(τw−νt)

)
. (35)

To obtain the polarization, which is a linear effect in the applied field E, we
only need ∆J and ∆w to first order in E. This means that the angle variables
w in the exponents in eq. (35) can be taken to zeroth order, i.e., w = ν0t.
Integrating ∆J̇ we find:

∆J =

t∫
0

∆J̇dt =
eE

2

∑
τ=±1

τAτ

{
1− e2πi(τν0t+νt)

τν0 + ν
+

1− e2πi(τν0t−νt)

τν0 − ν

}
. (36)

Next, we need to compute the first order shift ∆w in the angle variable w.
Hamilton’s equation for the angle variable w in the presence of the perturba-
tion is: 116

ẇ =
∂H0

∂J
+ eE

∂x

∂J
cos 2πνt

= ν0 +
eE

2

∑
τ=±1

∂Aτ

∂J

(
e2πi(τw+νt) + e2πi(τw−νt)

)
. (37)

Once again, w may be replaced by ν0t in the exponentials in eq. (37). Inte-
grating the second term in eq. (37), which gives the shift ∆ẇ due to Hint, we
find:

∆w =

t∫
0

∆ẇdt =
ieE

4π

∑
τ=±1

∂Aτ

∂J

{
1− e2πi(τν0t+νt)

τν0 + ν
+

1− e2πi(τν0t−νt)

τν0 − ν

}
.(38)

116 It is a special feature of the simple harmonic oscillator that the characteristic
frequency ν0 is independent of the amplitude and thus of the action variable J (see
eq. (26)). In general, ν0 will be a function of J . The first term on the right-hand
side of eq. (37) would then become ∂H0/∂J = ν0(J) = ν0 + (∂ν0/∂J)∆J .
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Substituting expressions (36) and (38) for ∆J and ∆w into eq. (32), we find

∆x =
eE

2

∑
τ ′=±1

∑
τ=±1

{
∂Aτ ′

∂J
τAτ − τ ′Aτ ′

∂Aτ

∂J

}
1− e2πi(τν0t−νt)

τν0 − ν
e2πiτ ′ν0t (39)

+ (ν → −ν),

where “(ν → −ν)” here and below is shorthand for: “the same term with
ν replaced by −ν everywhere.” The coherent contribution to the polariza-
tion comes from the terms in eq. (39) with the same time-dependence as the
applied field, i.e., from terms in which the time-dependence is given by the
factor e±2πiνt. In the terminology of Van Vleck (1924c, 361): “the part of the
displacement which is resonant to the impressed wave.” These are the terms
in which the summation indices, which in the case of the simple harmonic
oscillator only take on the values ±1, have opposite values, i.e., τ = −τ ′. The
contribution of such terms to the first-order displacement is

∆xcoh =
eE

2

∑
τ=±1

{(
∂A−τ

∂J
τAτ + τA−τ

∂Aτ

∂J

)
−e−2πiνt

τν0 − ν
+ (ν → −ν)

}

=
eE

2

∑
τ=±1

τ
∂|Aτ |2

∂J

{
e−2πiνt

ν − τν0

− e2πiνt

ν + τν0

}
. (40)

The imaginary part of this expression is a sum over the product of odd and
even functions of the index τ ,

−eE

2

∑
τ=±1

τ
∂|Aτ |2

∂J

(
1

ν − τν0

+
1

ν + τν0

)
sin 2πνt, (41)

and therefore vanishes, leaving only the real part:

∆xcoh =
eE

2

∑
τ

τ
∂|Aτ |2

∂J

(
1

ν − τν0

− 1

ν + τν0

)
cos 2πνt

=
eE

2

∑
τ

τ
∂|Aτ |2

∂J

(
2τν0

ν2 − τ 2ν2
0

)
cos 2πνt. (42)

Since |Aτ |2 = |A−τ |2 (see note 115) and since τ only takes on the values ±1
in the case of the simple harmonic oscillator, τ 2 = 1 and the two terms in the
summation over τ are identical. Although in this special case the derivative
with respect to J only acts on |Aτ |2, we are free to include the expression
2ν0/(ν

2−ν2
0) within the scope of the derivative (recall that ν0 does not depend
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on J in this case). Eq. (42) then becomes

∆xcoh = 2eE
∂

∂J

(
ν0

ν2 − ν2
0

|Aτ |2
)

cos 2πνt. (43)

The resulting expression for the dipole moment, p(t) = −e∆xcoh, of a one-
dimensional charged simple harmonic oscillatoris a special case of the expres-
sions for the dipole moment of a general non-degenerate multiply-periodic sys-
tem with the same charge given by Kramers and Van Vleck. Kramers (1924b,
310, eq. 2∗) denotes this quantity by P and gives the following formula:

P =
E

2

∑ ∂

∂I

(
C2ω

ω2 − ν2

)
cos 2πνt. (44)

In the special case of a one-dimensional charged simple harmonic oscillator, ω,
I, and C correspond to ν0, J , and 2|Aτ | in our notation, respectively. There
appears to be a factor e2 missing in Kramers’ formula. We shall derive the
corresponding formula (41) in (Van Vleck, 1924c, 361) in sec. 4.2.

Eq. (43) is equivalent to eq. (6), the result of our much simpler derivation in
sec. 2.1. Recalling that (cf. eqs. (25)–(26), eqs. (28)–(29) and note 115)

x(t) = 2|Aτ | cos 2πν0t =

√
J

2π2mν0

cos 2πν0t, (45)

we have |Aτ |2 = J/(8π2mν0), and eq. (43) reduces to

∆xcoh =
eE cos 2πνt

4π2m(ν2 − ν2
0)

. (46)

The dipole moment is thus given by:

p(t) = −e∆xcoh =
e2E

4π2m(ν2
0 − ν2)

cos 2πνt, (47)

in agreement with eq. (6).

The preceding discussion employs a version of canonical perturbation theory in
which a single set of action-angle variables, chosen for the unperturbed Hamil-
tonian, is used throughout the calculation, even after the time-dependent per-
turbation is switched on. Accordingly, the new action variables are no longer
constant, and the new angle variables are no longer linear in time. The same
classical polarization result is derived in a somewhat different manner by Born
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(1924) and by Kramers and Heisenberg (1925). Born performs a contact trans-
formation in which the generating function F (cf. eq. (13)) is chosen as a
function of the old coordinates and the new momenta F (qi, p′i), which is then
evaluated systematically order by order in the perturbation to maintain the
constancy of the new action variables. In (Kramers and Heisenberg, 1925) the
same procedure is followed, but as only the first order result is needed, it
suffices to use the infinitesimal form of the contact transformation. 117

3.2 Converting the classical formula for dispersion to a quantum formula in
the special case of a simple harmonic oscillator

Using Bohr’s correspondence principle as our guide, we now ‘translate’ the
classical formula (43) for displacement (and thence for polarization) into a
quantum formula. Two main ingredients go into this particular application
of the correspondence principle: (1) a rule—commonly attributed to Born
(1924) 118 but found and applied earlier by Kramers and Van Vleck (see
below)—for replacing derivatives with respect to the action variables in clas-
sical formulae by difference quotients involving neighboring quantum states;
(2) the A and B coefficients of Einstein’s quantum theory of radiation. In gen-
eral, the ‘translation’ of a classical formula into a quantum formula involves
a third step. The orbital frequencies need to replaced by transition frequen-
cies. The case of a simple harmonic oscillator has the special features that the
only relevant transitions are between adjacent states and that the transition
frequency νi→f coincides with the mechanical frequency ν0. Another special
feature is that the correspondence between quantum and classical results for
large quantum numbers continues to hold all the way down to the lowest quan-
tum numbers, due to the extremely simple form of the energy spectrum, with
uniformly spaced levels.

Using the rule for replacing derivatives by difference quotients, the quantum
formula for polarization is obtained from (43) by the formal correspondence
replacement

∂F

∂J

∣∣∣∣∣
J=rh

→ 1

h
(F (r + 1)− F (r)), (48)

where F (r) refers to any dynamical quantity associated with the quantum
state specified by the integer quantum number r. In the correspondence limit

117For a discussion of infinitesimal canonical transformations, see Ch. 11 of (Matzner
and Shepley, 1991).
118See, e.g., (Jammer, 1966, 193), and, following Jammer, (Aitchison et al., 2004,
1372), or (Cassidy, 1991, 178, 186, 188).
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where r gets very large, the difference between the values rh and (r + 1)h for
the action variable J become so small that the difference quotient to the right
of the arrow in eq. (48) becomes equal the derivative on the left. With this
prescription, the classical formula eq. (43) turns into a quantum expression
for the coherent part of the displacement of the particle in quantum state r:

∆xr
coh =

2eE

h

(
ν0|Ar+1|2

ν2 − ν2
0

− ν0|Ar|2

ν2 − ν2
0

)
cos 2πνt. (49)

The amplitudes Ar correspond to the Aτ (with τ = ±1) in eq. (43), and are
related to the amplitudes Dr in eq. (26) for an oscillator in state r by Dr =
2|Ar| (see eq. (45)). As we saw in sec. 2.1, Ladenburg (1921) showed how these
amplitudes can be connected to the Einstein A coefficients for spontaneous
emission (not to be confused with the amplitudes Ar).

At this point we briefly review Einstein’s quantum theory of radiation (Ein-
stein, 1916a,b, 1917), using the notation of (Van Vleck, 1924b). Imagine an
ensemble of atoms—or indeed, any conceivable quantized mechanical system,
such as one-dimensional quantized oscillators—in interaction and statistical
equilibrium with an ambient electromagnetic field of spectral density ρ(ν). If
we label the stationary states of the atoms by indices r, s, . . ., the number of
atoms in state r (of energy Er) by Nr, and recall the Bohr frequency condition
νrs = (Er−Es)/h, Einstein’s analysis gives an average rate of energy emission
of light of frequency νrs for an atom in state r as

dEr→s

dt
= hνrs (Ar→s + Br→sρ(νrs)) , (50)

and the rate of energy absorption of light of frequency νrs by an atom in state
s as

dEs→r

dt
= hνrsBs→rρ(νrs). (51)

Einstein’s analysis of the requirements for thermodynamic equilibrium and
comparison with Planck’s law of black-body radiation then yields the critical
relations

Br→s = Bs→r =
c3

8πhν3
rs

Ar→s. (52)

For a charged simple harmonic oscillator, the only allowed transitions amount
to changes in the action by one unit of Planck’s constant h, so there is only
a single Einstein coefficient for spontaneous emission from the state r + 1,
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namely Ar+1→r. The correspondence principle dictates that we associate the
rate of spontaneous energy emission for high quantum numbers,

dEr+1→r

dt
= hν0Ar+1→r (53)

(cf. eq. (50), in the absence of external radiation) with the classical result for
the power emitted by an accelerated (in this case, oscillating) charge, given
by the Larmor formula (Jackson, 1975; Feynman et al., 1964, Vol. 1, Ch. 32):

P =
2

3

e2

c3
v̇2. (54)

For an oscillator in state r, with x(t) = Dr cos ω0t, this becomes, for the
instantaneous power emission Pr in state r

Pr =
2

3

e2

c3
ω4

0D
2
r cos2 ω0t, (55)

the time average of which, 1
3
(e2/c3)ω4

0D
2
r , then gives the desired connection

between the amplitudes Dr = 2|Ar| appearing in eq. (49) and the Einstein
coefficient Ar+1→r:

hν0Ar+1→r =
4

3

e2

c3
ω4

0|Ar+1|2

|Ar+1|2 =
3hc3

64π4e2ν3
0

Ar+1→r. (56)

Van Vleck (1924b, 333) refers to this connection as the “correspondence prin-
ciple for emission.” Multiplying the displacement ∆x in eq. (49) by the charge
−e to obtain the dipole moment per oscillator, and by nosc, the number den-
sity of oscillators, we obtain the following result for the polarization induced
by the electric field E:

Pr = 3
noscc

3

32π4
E

(
Ar+1→r

ν2
0(ν

2
0 − ν2)

− Ar→r−1

ν2
0(ν

2
0 − ν2)

)
cos 2πνt. (57)

Of course, for the special case of the ground state of the oscillator, r = 0,
the second term in eq. (57) cannot be present. Ladenburg’s quantum formula
for dispersion accordingly only had the equivalent of the first term in eq.
(57) (Ladenburg, 1921). The full equation corresponds to eq. (5) in (Kramers,
1924a), and to eq. (17) in (Van Vleck, 1924b), except for a factor of 3, as we
have not assumed random orientation of the oscillators (Van Vleck, 1924b,
footnote 25).

63



One may easily guess that the corresponding formula for a more general,
multiply-periodic system will take the form of (Van Vleck, 1924b, eq (17)), in
analogy to (57) (cf. eqs. (6)–(7)):

Pr = 3
noscc

3

32π4
E

(∑
s

As→r

ν2
sr(ν

2
sr − ν2)

−
∑

t

Ar→t

ν2
rt(ν

2
rt − ν2)

)
cos 2πνt, (58)

where the sum over s (resp. t) corresponds to states higher (resp. lower) than
the state r, and where νij is Van Vleck’s notation for the transition frequency
νi→j . In the correspondence limit where r is very large and neither s nor t
differ much from r, the transition frequencies νsr and νrt become equal to the
orbital frequencies in the orbits characterized by the values rh, sh, and th
for the action variable J . For the harmonic oscillator, the sums in eq. (58)
degenerate to a single term each (with s = r+1, t = r−1), and the transition
frequencies νsr, νrt are all equal to the mechanical frequency ν0. In sec. 4.2 we
shall explain Van Vleck’s derivation of eq. (58) in detail.

From the point of view of classical dispersion theory, the terms in the second
sum in eq. (58) for polarization, corresponding to transitions to lower states,
have no direct physical interpretation. They appear to correspond to oscilla-
tors of negative mass (Kramers 1924a, 676; 1924b, 311)! In the early spring
of 1924 Van Vleck had already derived an expression for absorption with a
structure similar to that of eq. (58) for polarization (see sec. 3.3). In the case
of absorption, the terms with transitions to lower states are readily recognized
as corresponding to “negative absorption,” i.e., to the process of stimulated
emission introduced by Einstein.

As we indicated above, there is some disagreement in the historical literature
as to who was or who were responsible for the key move in the construction of
the quantum dispersion formula on the basis of the correspondence principle,
viz. the replacement (48) of derivatives with respect to the action variable by
difference quotients. Jammer (1966, 193) and Mehra and Rechenberg (1982–
2001, Vol. 2, 173) suggest that Kramers got the idea from Born via Heisenberg.
The rule can be found in (Born, 1924), published well before Kramers first used
it in print in (Kramers and Heisenberg, 1925). Dresden (1987, 222) convinc-
ingly argues, however, that Kramers and Born found this rule independently
of one another, with Kramers finding it well before Born. Recall that Slater
wrote to Van Vleck in July 1924 that Kramers already had the derivation of
his dispersion formula in December 1923 (see sec. 2.2). It turns out that Van
Vleck discovered the replacement (48) of derivatives by difference quotients
for himself as well. Since Van Vleck (1924a) announced the correspondence
principle for absorption, which he could not have derived without this rule,
in a paper submitted in April 1924, whereas (Born, 1924) was not received
by Zeitschrift für Physik until June 1924, Van Vleck clearly could not have
taken the rule from Born’s paper. Writing to Born later in 1924, Van Vleck
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sounds slightly annoyed at Born’s insinuation that he, Van Vleck, somehow
did not realize that one needs to replace derivatives by difference quotients to
get from classical to quantum-theoretical expressions. In a letter of October
24, 1924, from which we already quoted in sec. 1.4, Born had written:

I am sending you my paper On Quantum Mechanics [Born 1924], which
pursues a goal similar to yours. While you limit yourself to the correspon-
dence with high quantum numbers, I conversely aim for rigorous laws for
arbitrary quantum numbers.

To which Van Vleck replied:

Thank you for your letter and reprint relating to “Quantum Dynamics, etc”
. . . I have read with great interest your important, comprehensive article.
There is, as you say, considerable similarity in the subject matter in your
article and mine, especially as regards to dispersion 119 . . . As noted in your
letter you mention more explicitly than do I the fact that formulas of the
quantum theory result from those of the classical theory by replacing a
derivative by a difference quotient. I have stressed the asymptotic connection
of the two theories but I think it is clear in the content of my article that in
the problems considered the classical and quantum formulas are connected
as are derivatives and difference quotients (Van Vleck to Born, November
30, 1924 [AHQP]).

That Kramers, Van Vleck, and Born independently of one another hit upon the
same idea, underscores that the rule (48) for replacing derivatives by difference
quotients is so natural that it readily comes to mind when one is trying to
construct quantum-theoretical expressions out of classical ones on the basis of
the correspondence principle.

3.3 Emission and absorption classically and quantum-theoretically in the spe-
cial case of a simple harmonic oscillator

Before we present Van Vleck’s “correspondence principle for absorption” (for
the special case of a simple harmonic oscillator), we gather some useful re-
sults from the classical theory of a charged oscillator (of natural frequency
ν0) coupled to a Maxwellian electromagnetic field. Such an oscillator (i) emits
electromagnetic radiation of frequency ν0 in the absence of an external field,

119Van Vleck seems to be talking here about (Van Vleck, 1924b,c), whereas Born
was talking about (Van Vleck, 1924a). Born asked Van Vleck to send him “an
offprint of your extensive calculations.” Van Vleck obliged: ‘As you requested, I am
sending you under separate cover a reprint of Parts I and II of my computations,”
presumably (Van Vleck, 1924b,c).
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(ii) absorbs energy from an applied electromagnetic field of frequency ν, and
(iii) undergoes a net displacement coherent with an applied electromagnetic
field (or “polarization”, analyzed above).

The Larmor formula (54) gives the power loss due to radiation by our charged
harmonic oscillator. The energy loss of the oscillating system can be ascribed
to a radiative reaction force given by

Frad =
2e2

3c3
v̈ ≡ mτv̈, (59)

where we shall assume that the characteristic time τ is very short in com-
parison to the mechanical period: ω0τ << 1, so that radiation damping is
very slow on the time scale of the mechanical oscillations of the system. The
equation of motion of the oscillator (in the absence of external applied forces)
now becomes

v̇ − τ v̈ + ω2
0x = 0. (60)

Now, to a good approximation, the coordinates and velocities of this system
are still behaving as harmonic oscillations of frequency ω0 so we may assume
v̈ ' −ω2

0v in (60) and obtain

ẍ + τω2
0ẋ + ω2

0x = 0. (61)

Inserting the Ansatz x(t) = De−αt into equation (61), we find:

(α2 − τω2
0α + ω2

0)De−αt = 0. (62)

Neglecting a term with τ 2ω4
0 (recall that ω0τ << 1, so that τ 2ω4

0 << ω2
0),

120

we can rewrite the expression in parentheses as:

(α− 1

2
τω2

0 + iω0)(α−
1

2
τω2

0 − iω0). (63)

It follows that:

α ' 1

2
τω2

0 ± iω0 ≡ Γ/2± iω0. (64)

120Such terms are treated incorrectly in any event by the approximation leading to
eq. (61).
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Thus, we have a solution of the form

x(t) = De−Γt/2 cos ω0t, (65)

from which the average rate of oscillator energy loss from the Larmor formula
(54) at small times (i.e., when damping due to the e−Γt/2 factor can be ignored)
is easily seen to be

−dEosc

dt
=

e2

3c3
D2ω4

0 =
16π4e2

3c3
D2ν4

0 (66)

(where we used that v̇ ' ω2
0D). The constant Γ = τω2

0 is called the radiative
decay constant. We emphasize again that the preceding discussion presupposes
the narrow resonance limit, Γ << ω0. In terms of Γ, the basic equation of
motion (61) can be written as

ẍ + Γẋ + ω2
0x = 0. (67)

Now suppose that our charged oscillator is immersed in an ambient electro-
magnetic field, characterized by a spectral function (energy density per unit
spectral interval) ρ(ν). As we are dealing with one-dimensional oscillators we
shall simplify the discussion by assuming that only the x-component of the
electric field is relevant as all the oscillators are so aligned. Then (using over-
bars to denote time averages) the average value of the electromagnetic energy

density is (in Gaussian units) (1/4π)Ē
2

= (3/4π)Ēx
2

= ρ(ν)∆ν in the fre-

quency interval (ν, ν + ∆ν). If Ex = E cos 2πνt we have Ēx
2

= E2/2 so finally
we have

E2 =
8π

3
ρ(ν)∆ν. (68)

The equation of motion (67) must be modified to include the coupling to the
external field (switching back temporarily to angular frequencies, ω = 2πν,
and using complex notation to encode amplitude and phase information):

ẍ + Γẋ + ω2
0x =

eE

m
eiωt ≡ Fapp/m, (69)

and the average rate of energy absorption of the oscillator from the ambient
field is simply the time average < Fappẋ >. This linear second order equation
is solved by a sum of transients (i.e. solutions of the homogeneous equation:
see eq. (67))

xtr(t) = De−Γt/2 cos ω0t, (70)
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plus the following particular solution coherent with the applied perturbation

xcoh(t) = Re
eE

m

eiωt

ω2
0 − ω2 + iΓω

, (71)

so that the desired time average < Fappẋ >=< Fapp(ẋtr + ẋcoh) > giving the
energy absorption rate becomes

< Fappẋ >=< eE cos ωt
eE

m
Re

(
iωeiωt

ω2
0 − ω2 + iΓω

)
> . (72)

Note that the transient part of the particle coordinate xtr(t) is not coherent
with the applied field (we assume ω 6= ω0), and therefore does not contribute to
the time average of the energy absorption. This explains why the amplitude D
of the oscillations is absent from the final result, which will instead depend only
on the specific energy density of the ambient field. In other words, even though
the charged particle may be executing very large amplitude oscillations xtr(t),
the only part of the full coordinate x(t) responsible for a nonvanishing average
absorption is the part of the displacement xcoh(t) induced by the applied field,
which is proportional to E and does not involve the amplitude D. As we
shall see below, the corresponding feature of the quantum calculation in the
correspondence limit led Van Vleck to the very important realization that the
net energy absorption involves a difference in the amount of absorption and
stimulated emission as described in Einstein’s quantum theory of radiation.

Only the cosine part of the complex exponential in eq. (72) will contribute to
the time average. Using < cos2 ωt >= 1/2 and eq. (68), we find

< Fappẋ > =
e2E2Γ

2m

ω2

(ω2
0 − ω2)2 + Γ2ω2

=
4πe2

3m
ρ(

ω

2π
)Γ

ω2

(ω2
0 − ω2)2 + Γ2ω2

1

2π
∆ω (73)

for the energy absorption rate due to the ambient field in the frequency in-
terval (ν, ν + ∆ν) = (ω, ω + ∆ω). Since eq. (73) contains the electric field
E squared, it is apparent that the generalization of this linear simple har-
monic oscillator result to an arbitrary multiply-periodic system will require a
second-order canonical perturbation theory calculation, which will necessar-
ily be more involved than the corresponding classical polarization calculation,
which only involves the electric field to the first order. In the case of interest,
where Γ << ω0, the line resonance shape in eq. (73) is highly peaked around
the resonance frequency ω0, so we may use the distributional limit

ε

x2 + ε2
→ πδ(x), ε → 0 (74)
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with x = ω2 − ω2
0 and ε = Γω to execute the integration over ω in eq. (73)

and compute the total absorption rate:

< Fappẋ >≈ 2e2

3m

∫
ρ(

ω

2π
)Γ

π

Γω
ω2δ(ω2 − ω2

0)dω

=
πe2

3m
ρ(ν0). (75)

This classical result is found in (Planck, 1921) (Van Vleck, 1924b, 339, note
12)) 121 and gives the rate at which a classical charged oscillator gains energy
when immersed in an ambient classical electromagnetic field.

In eq. (56) we found the connection in the limit of high quantum numbers
between the Einstein A coefficients and the amplitudes Dr = 2|Ar| of the
mechanical motion in the emitting state r:

Ar→s'
16π4e2

3hc3
D2

rν
3
rs. (76)

From the Einstein relation (52) this implies a corresponding result for the
B-coefficients:

Br→s = Bs→r =
2π3e2

3h2
D2

r . (77)

In the r-th quantized state of the oscillator, we have J = rh so from eq. (26)
the corresponding amplitude Dqu

r of the quantized motion becomes

Dqu
r =

√
rh

2π2mν0

, (78)

and the quantum result for the A coefficients in the present case of a linear
simple harmonic oscillator becomes

Ar→r−1 =
8π2e2ν2

0r

3mc3
, (79)

while the quantum result for the B coeffficients takes the form

Br→r−1 = Br−1→r =
πe2r

3hmν0

. (80)

121Van Vleck probably got the references to (Planck, 1921) from (Ladenburg and
Reiche, 1923). Both (Van Vleck, 1924b, 339, note 12; 340, note 14) and (Ladenburg
and Reiche, 1923, 588, note 19; 591, note 30) cite “equations (260) and (159)” and
“section 158” in (Planck, 1921).
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The Einstein analysis of A and B coefficients makes it clear that at the quan-
tum level we must consider what Van Vleck (1924b, 340) calls the “differential
absorption rate”: the rate of energy absorption of the oscillator in state r going
to state r + 1 via (51) minus the stimulated emission induced by the ambient
field and causing the transition r to r− 1 (the B term in (50)). From eq. (80)
we therefore have for the differential absorption rate of an oscillator in state r

dEnet

dt
= hν0(Br→r+1 −Br→r−1)ρ(ν0)

= hν0(Br+1→r −Br→r−1)ρ(ν0)

= hν0(r + 1− r)
πe2

3hmν0

ρ(ν0)

=
πe2

3m
ρ(ν0), (81)

which is precisely the classical result (75). Note that the dependence on the
quantum state r (or classically, the amplitude of the motion Dr) has cancelled
in the differential absorption rate, corresponding to the lack of coherence dis-
cussed previously between the transient and impressed motion.

Van Vleck derived this result in sec. 4 of his paper. He concluded:

We thus see that in the limiting case of large quantum numbers, where [eq.
(80)] is valid, the classical value [in eq. (75)] for the rate of absorption of
energy is nothing but the differential rate of absorption in the quantum
theory. This connection of the classical and quantum differential absorption
we shall term the correspondence principle of absorption (Van Vleck, 1924b,
340). 122

In sec. 5, he generalized the result to arbitrary non-degenerate multiply-
periodic systems.

Van Vleck’s correspondence principle for ‘differential absorption’ (i.e., the ex-
cess of absorption over stimulated emission) also clarifies the correspondence
principle for dispersion. As Kramers (1924a,b) emphasized, the negative terms
in the dispersion formula were difficult to account for on the basis of purely
classical concepts—they somehow corresponded to a negative value for e2/m
for those virtual oscillators corresponding to transitions from the initial atomic
level to lower energy levels. Similar negative contributions in the case of ab-
sorption are physically much more transparent: transitions to higher levels

122Van Vleck points out that this “is a purely mathematical consequence of the
correspondence principle for emission, which was used in deriving [eq. (80)]” (ibid.).
A few pages later, Van Vleck (1924b, 343) notes that he could also have done the
reverse, deriving the correspondence principle for emission from that for absorption.
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result in a positive absorption of energy from the ambient electromagnetic
field, whereas transitions to lower levels result in energy being returned to the
field. The latter process was therefore known as “negative absorption” at the
time, a term used by both Kramers (1924a, 676) and Van Vleck (1924b, 338).
Noticing the greater physical transparency of his correspondence-principle re-
sults for absorption, and under the impression that Kramers’ correspondence-
principle arguments for the dispersion formula rested only on a treatment of
harmonic oscillators, Van Vleck added sections on dispersion to his paper.
Sec. 6, “The General Correspondence Principle Basis for Kramers Dispersion
Formula,” was added to the first quantum-theoretical part of the paper; sec.
15, “Computation of Polarization,” to the classical part (see the letter from
Van Vleck to Kramers of September 1924, quoted in sec. 2.2). Van Vleck was
thus the first to publish a fully explicit derivation of the correspondence limit
for polarization in the context of a general multiply-periodic system.

When Kuhn in his AHQP interview with Van Vleck brought up the paper
on the correspondence principle for absorption, Van Vleck said: “I think that
was one of my better papers.” “How did you get into that?,” Kuhn wanted to
know. Van Vleck told him:

Through a misunderstanding of something Gregory Breit [Van Vleck’s col-
league in Minnesota at the time] told me. He said that the net absorption
was the difference between the fluctuations up and the fluctuations down,
referred to some paper of—I think it was (Kretschmann)—but that was an
entirely different thing. It was concerned with the fact that under certain
phase relations the light did work on the atom and under certain phase
relations the atom did work on the light. It was dealing essentially with sta-
tistical fluctuations. I misunderstood his remark and proceeded to try and
get the differential effect between the absorption up from a given stationary
state and a[b]sorption going down. 123

The paper Breit was referring to is presumably (Kretschmann, 1921). In this
paper, Erich Kretschmann (1887–1973), a student of Planck better known for
his work in general relativity (Kretschmann, 1917), gave a purely classical
discussion of the emission and absorption of radiation. What Van Vleck says
here about this paper fits with its contents.

123P. 22 of the transcript of the AHQP interview with Van Vleck on October 2,
1963. Van Vleck told this story in somewhat greater detail to Katherine Sopka
(1988, 135, note 184, which, however, makes no mention of Kretschmann). He also
explained to her why he acknowledged Breit in (Van Vleck, 1924a, 28) but not in
(Van Vleck, 1924b,c): “As he [Van Vleck] remembers it, he wanted to thank Breit
in the latter, but Breit objected on the ground that the phase fluctuations he had
in mind were quite different from the difference effect employed by Van Vleck and
so, overmodestly, felt no acknowledgment was in order.”
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Van Vleck’s comments, however, are also very reminiscent of the following
passage in (Ladenburg and Reiche, 1923):

. . . according to Einstein’s assumptions the effect of external radiation on
a quantum atom corresponds to the effect a classical oscillator experiences
from an incident wave. When the frequency of such a wave does not differ
much or not at all from the characteristic frequency of the oscillator, the
reaction of the oscillator consists in an increase or a decrease of its energy,
depending on the difference in phase between the external wave and the
motion of the oscillator. In analogy to this, Einstein assumes that the atom
in state i has a probability characterized by the factor bik to make a tran-
sition to a higher state k under absorption of the energy hν of the incident
wave (“positive irradiation”) and that the atom in state k has another prob-
ability (bki) to return to the state i under the influence of an external wave
(“negative irradiation”) (Ladenburg and Reiche, 1923, 586)

As we mentioned in sec. 2.1, Ladenburg and Reiche appealed to the corre-
spondence principle to justify their quantum formulae for emission, absorp-
tion, and dispersion. Except in the case of emission, however, their arguments
were fallacious. We conjecture that this is what inspired Van Vleck to use
his expertise in techniques from celestial mechanics—the kind of expertise
Ladenburg and Reiche clearly lacked—to derive expressions for emission, ab-
sorption, and dispersion merging with classical results in the sense of the
correspondence principle. Van Vleck (1924b, 339, note 13; 344, note 21) cited
Ladenburg and Reiche but gave no indication that their paper was the in-
spiration for his own. It is not implausible, however, that Van Vleck simply
preferred to pass over their badly flawed calculations in silence rather than
touting his own clearly superior results. As we mentioned in sec. 2.1, one of
the problems with the “correspondence” arguments of Ladenburg and Reiche
is that, following (Planck, 1921) and in the spirit of the derivation of the A
and B coefficients in (Einstein, 1917), they focus on collections of atoms in
thermal equilibrium rather than on individual atoms. What is suggestive of a
possible influence of (Ladenburg and Reiche, 1923) on (Van Vleck, 1924b,c) is
that the exact same passages of (Planck, 1921) are cited in both papers (see
note 121 above) and that Van Vleck (1924b, 340, note 14) explicitly comments
on the issue of many atoms in thermal equilibrium versus single atoms, noting
that in Planck’s discussion “no explicit mention is made of the asymptotic
connection of the classical absorption and the differential absorption for a sin-
gle orbit (where thermodynamic equilibrium need not be assumed) which is
the primary concern of the present paper.” The topic of a third installment
that Van Vleck originally planned to add to his two-part paper also becomes
understandable in light of our conjecture about the connection between (Van
Vleck, 1924b,c) and (Ladenburg and Reiche, 1923). As Van Vleck explained in
1977 (see note 29 above): “Part III was to be concerned with the equilibrium
between absorption and emission under the Rayleigh-Jeans law.” If Ladenburg
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and Reiche did indeed stimulate Van Vleck’s work, however, it is odd that he
does not seem to have recognized that the virtual oscillators of BKS, which
Van Vleck consistently attributed to Slater, are essentially just the Ersatz-
oscillators of (Ladenburg and Reiche, 1923). Van Vleck, however, was hardly
alone in associating virtual oscillators with BKS. We thus conclude that it is
plausible that Van Vleck was inspired by (Ladenburg and Reiche, 1923) to
formulate correspondence principles for emission, absorption, and dispersion.
For one thing, this would explain why Van Vleck, who had not worked on ra-
diation theory before, turned his attention to the interaction between matter
and radiation.
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4 Generalization to arbitrary non-degenerate multiply-periodic sys-
tems

4.1 The correspondence principle for absorption

The primary result of (Van Vleck, 1924b,c) was an extension of eq. (81) to an
arbitrary non-degenerate multiply-periodic system of a single particle in three
dimensions, and the demonstration that the quantum-differential absorption
coincides with this more general result in the correspondence limit. Before
giving Van Vleck’s result we recall some basic features of multiply-periodic
systems, which we shall in any event need in the next subsection when a
completely explicit derivation (following, with minor notational changes, the
one laid out by Van Vleck) of the corresponding formula for polarization will
be provided.

The transition from one-dimensional periodic (and harmonic) systems such as
the linear simple harmonic oscillator to three-dimensional multiply-periodic
ones is fairly straightforward. Apart from the obvious need to introduce vector
quantities, there are only two significant additional features. First, there is the
appearance of multiple overtones in the general multiply-periodic expansion
(so that the multiplicity variables in the analogue of eq. (28) take arbitrary
positive and negative integral values, not just ±1). Second, the mechanical
frequencies ν1, ν2, ν3 (with νi = ∂H0/∂Ji) of the separated coordinates are
now in general functions of the amplitude of the classical path, which is to
say, of the action variables Ji (with i = 1, 2, 3). We assume as before that the
imposed electric field is in the X-direction so the x-coordinate of our electron
is the relevant one for computing the induced coherent polarization, and in
analogy to eq. (28) we now have

x(t) =
∑
~τ

A~τe
2πi~τ ·~w, (82)

where in the absence of the external field the angle variables ~w = (w1, w2, w3) =
(ν1, ν2, ν3)t ≡ ~νt and ~τ = (τ1, τ2, τ3) with τi taking on all (positive and nega-
tive) integer values. It will be useful to write eq. (82) in an alternative purely
real form, as a cosine expansion:

x(t) =
∑

~τ,~τ ·~ν>0

X~τ cos (2π~τ · ~νt). (83)

The complex amplitudes A~τ satisfy the conjugacy condition A~τ = A∗
−~τ to

ensure that x(t) is real and we have the relation X2
~τ = 4A~τA−~τ .

124

124Cf. eqs. (28)–(29) and note 115 in sec. 3.1.

74



As before (cf. eq. (27)), the full Hamiltonian has the form

H = H0 + eEx(t) cos 2πνt. (84)

The subscripted mechanical frequencies νi with i = 1, 2, 3 (comprising the
vector ~ν) must be distinguished from the single frequency ν (unsubscripted)
corresponding to the applied field.

With these notations, Van Vleck’s result for the absorption rate becomes (Van
Vleck, 1924b, 342, eq. (16)):

dEnet

dt
=

2

3
π3e2

[
ρ(~τ · ~ν)τk

∂Gτ

∂Jk

+ ρ′(~τ · ~ν)Gττk
∂

∂Jk

(~τ · ~ν)

]
. (85)

where ρ′ ≡ ∂ρ/∂ν and where summation over k = (1, 2, 3) is implied and where
Gτ ≡ ~τ · ~νD2

~τ with D2
~τ ≡ X2

~τ + Y 2
~τ + Z2

~τ . In the special case of the harmonic
oscillator, the term with ρ′, the derivative of the spectral function, vanishes
as there is only a single mechanical frequency ν = ν0, which is independent of
the action variable J . In the first term, we get simply

dEnet

dt
=

2

3
π3e2ρ(ν0)

∂

∂J
(ν0D

2). (86)

Using eq. (26), D =
√

J/mπω0, for the amplitude, we recover the previous

result, eq. (81).

Eq. (85) is the product of a highly nontrivial application of canonical pertur-
bation techniques, where quantities of second order in the applied field need
to be properly evaluated (cf. discussion following eq. (73) above). The polar-
ization calculation presented in full in the next section only involves canonical
perturbation theory to first order. For the absorption calculation, the variation
in the action variables ∆Jk in particular is needed to second order, and the
integration of the result obtained for a monochromatic incident field needed
to pass to the case of continuous radiation specified by an arbitrary spectral
function ρ(ν) requires considerable care.

Slater also tried his hand at this calculation, as can be inferred from a letter
from Kramers to Van Vleck of November 11, 1924. This is the reply to Van
Vleck’s letter of September 22, in which Van Vleck explained that he had added
a discussion of dispersion to (Van Vleck, 1924b,c) unaware that Kramers had
already obtained those same results but had not yet published them. This he
only heard later from Slater (see sec. 2.2). Kramers wrote:

Your note on absorption made me much pleasure and I think it very just of
Providence that you got it published before hearing of our work. Slater had,
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on my request, made the same calculation, and he stated that the classical
mean-absorption formula gave the right result in the limit of high quantum
numbers. I did, however, not see his formula, and am not quite sure that
he had not forgotten the term with ∂ρ/∂ν, without which the thing is not
complete of course.

Van Vleck clearly remembered this point almost forty years later. Talking to
Kuhn about his 1924 absorption papers, he mentioned: “I got the term in
partial rho with respect to nu. I’m very proud of the fact that I picked that
one up . . . Slater, at Kramers’ suggestion I guess, made a completely parallel
calculation in Copenhagen which he never published.” 125

4.2 The correspondence principle for polarization

In this section we retrace the derivation given by Van Vleck (1924c) of the
classical polarization formula for a general non-degenerate multiply-periodic
system (with a single electron) in three dimensions. We remind the reader
that this result is by no means new to Van Vleck, nor, for that matter, to
Born or Kramers, who also produced derivations of the same result at around
this time, using slightly different versions of canonical perturbation theory
(cf. our comments at the end of sec. 3.1). The formula obtained is basically
identical to a formula originally derived in celestial mechanics to compute the
perturbation in the orbits of the inner planets due to the outer ones. As we
saw in sec. 2.1, Epstein had been the first to use the relevant techniques from
celestial mechanics in the context of the old quantum theory. As Van Vleck
reminded Slater in a letter of December 15, 1924 (AHQP): “The classical
formula analysis to the Kramer[s] formula appears to be first ca[lc]ulated by
Epstein [1922c].”

The derivation is basically a straightforward generalization of the derivation
of sec. 2.1 for the special case of a charged simple harmonic oscillator in an
electromagnetic field (see eqs. (31)–(43)). The first-order perturbation in the
coordinate x(t) (the direction of the electric field in the incident electromag-
netic wave) corresponding to the shifts (∆Jl, ∆wl) in the action-angle variables
is given by the three-dimensional version of eq. (31):

∆x =
∂x

∂Jl

∆Jl +
∂x

∂wl

∆wl. (87)

As in sec. 2.1, we imagine that the external field is switched on at time zero,
so that the shifts (∆Jl, ∆wl) are the integrals of their time derivatives from 0

125P. 22 of the transcript of the AHQP interview with Van Vleck on October 2, 1963.
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to t. In analogy with eq. (36) and using eq. (82) for x(t), we can immediately
write down the equation for ∆Jl to first order in E:

∆Jl =

t∫
0

J̇ldt =
eE

2

∑
~τ

τlA~τ

{
1− e2πi(~τ ·~ν+ν)t

~τ · ~ν + ν
+ (ν → −ν)

}
. (88)

All the terms inside the summation can be taken to zeroth order in the applied
field. The computation of the first-order shifts ∆wl is a little more involved as
new terms, not present in the harmonic-oscillator case, enter (cf. note 116).
The Hamilton equation for ẇl for the full Hamiltonian eq. (84) is (cf. eq. (37)):

ẇl = νl +
eE

2

∑
~τ

∂A~τ

∂Jl

{
e2πi(~τ ·~ν+ν)t + (ν → −ν)

}
. (89)

Both terms in eq. (89) contribute to the first-order deviation ∆ẇl from the
value of νl for the unperturbed system. Since νl depends on Jk, there will be a
term (∂νl/∂Jk)∆Jk (cf. note 116). The second term is just the generalization
of the corresponding term in eq. (37). Hence, we get:

∆ẇl =
∂νl

∂Jk

∆Jk +
eE

2

∑
~τ

∂A~τ

∂Jl

{
e2πi(~τ ·~ν+ν)t + (ν → −ν)

}
. (90)

Upon substitution of eq. (88) for ∆Jk this turns into

∆ẇl =
eE

2

∑
~τ

{
∂A~τ

∂Jl

e2πi(~τ ·~ν+ν)t + τk
∂νl

∂Jk

A~τ
1− e2πi(~τ ·~ν+ν)t

~τ · ~ν + ν

}
(91)

+ (ν → −ν).

Integrating eq. (91), we find

∆wl =
eE

4π

∑
~τ

{
i
∂A~τ

∂Jl

1− e2πi(~τ ·~ν+ν)t

~τ · ~ν + ν
(92)

+τk
∂νl

∂Jk

A~τ
2π(~τ · ~ν + ν)t− i(1− e2πi(~τ ·~ν+ν)t)

(~τ · ~ν + ν)2

}
+ (ν → −ν).

Inserting eq. (82) into eq. (87), we arrive at

∆x(t) =
∑
~τ ′

(
∂A~τ ′

∂Jl

∆Jl + 2πiA~τ ′τ ′l∆wl

)
e2πi~τ ′·~νt. (93)
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Inserting eqs. (88) and (92) for ∆Jl and ∆wl, respectively, into this expression,
we obtain

∆x(t) =
eE

2

∑
~τ,~τ ′

{
τl

∂A~τ ′

∂Jl

A~τ
1− e2πi(~τ ·~ν+ν)t

~τ · ~ν + ν
− τ ′l

∂A~τ

∂Jl

A~τ ′
1− e2πi(~τ ·~ν+ν)t

~τ · ~ν + ν

+A~τA~τ ′τk
∂νl

∂Jk

τ ′l
2πi(~τ · ~ν + ν)t + 1− e2πi(~τ ·~ν+ν)t

(~τ · ~ν + ν)2

+ (ν → −ν)
}

e2πi~τ ′·~νt. (94)

As in sec. 2.1, we are only interested in the coherent contribution to the
polarization, so we drop all terms in eq. (94) whose time dependence is not

precisely e±2πiνt and find, writing for convenience τk(∂/∂Jk) ≡ ~τ · ~∇J ,

∆xcoh =
eE

2

∑
~τ

{
−~τ · ~∇J(A~τA−~τ )

e2πiνt

~τ · ~ν + ν
(95)

+ A~τA−~τ~τ · ~∇J(~τ · ~ν)
e2πiνt

(~τ · ~ν + ν)2

}
+ (ν → −ν).

Note that the coherent contribution derives from terms in which ~τ ′ = −~τ ,
as otherwise the uncancelled overtones from the mechanical system would
shift the spectral line (as in Raman scattering). Essentially the only addi-
tional physics of (Kramers and Heisenberg, 1925) in comparison to (Van Vleck,
1924b,c) is a detailed examination of such terms, predicted earlier by Smekal
(1923). The terms in eq. (95) involving sin 2πνt vanish, as can be seen with
the help of the identities

∑
~τ

τj

(
1

~τ · ~ν + ν
− 1

~τ · ~ν − ν

)
· (even function of ~τ) = 0

∑
~τ

τjτk

(
1

(~τ · ~ν + ν)2
− 1

(~τ · ~ν − ν)2

)
· (even function of ~τ) = 0.

Thus eq. (95) simplifies to

∆xcoh =−eE

2
cos 2πνt

∑
~τ

{
~τ · ~∇J(

A~τA−~τ

~τ · ~ν + ν
) + (ν → −ν)

}

=−eE cos 2πνt
∑
~τ

~τ · ~∇J

(
~τ · ~νA~τA−~τ

(~τ · ~ν)2 − ν2

)
. (96)

With the replacement X2
~τ = 4A~τA−~τ , we may go over to the cosine form of the

expansion in eq. (96) (cf. eqs. (82)–(83)), summing over only positive values
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of ~τ · ~ν (with a factor of 2):

∆xcoh = −eE

2
cos 2πνt

∑
~τ,~τ ·~ν>0

~τ · ~∇J

(
~τ · ~νX2

~τ

(~τ · ~ν)2 − ν2

)
. (97)

This is the generalization of eq. (43) for the harmonic oscillator.

Finally, we obtain the polarization by multiplying the displacement by Nr, the
number of electrons per unit volume (the subscript r refers to the fact that
we shall shortly consider only electrons in a particular quantum state r), and
by −e for the electron charge

P = Nr
e2

2
E cos 2πνt

∑
~τ ·~ν>0

~τ · ~∇J

(
~τ · ~νX2

~τ

(~τ · ~ν)2 − ν2

)
(98)

which is eq. (41) in(Van Vleck, 1924c; in Van Vleck’s notation, ~τ ·~ν is written
ωτ ) and equivalent to eq. (2∗) in (Kramers, 1924b).

The equivalence of eq. (98) to the Kramers dispersion formula (58) in the
correspondence limit is sketched in (Kramers, 1924b) and fully explained in
sec. 6 of (Van Vleck, 1924b). Here we follow the latter. So we begin with eq.
(58) for the polarization of a quantized system in state r, without the factor
of 3 corresponding to the assumption that all oscillators be aligned with the
applied field (rather than randomly in 3 dimensional space), and writing Nr

instead of nosc:

Pr =
Nrc

3

32π4
E cos 2πνt

(∑
s

As→r

ν2
sr(ν

2
sr − ν2)

−
∑

t

Ar→t

ν2
rt(ν

2
rt − ν2)

)
. (99)

The sums over s (resp. t) refer to states higher (resp. lower) in energy than
the fixed state r under consideration. In the correspondence limit, we take the
state r to correspond to very high quantum numbers (n1, n2, n3). The states
s, t are associated to the central state r in symmetrical pairs:

s→ (n1 + τ1, n2 + τ2, n3 + τ3),

r→ (n1, n2, n3), (100)

t→ (n1 − τ1, n2 − τ2, n3 − τ3),

with ~τ · ~ν > 0 so that the states s (resp. t) do indeed correspond to higher
(resp. lower) energy states. Furthermore, we assume that ~τ · ~ν << ~n · ~ν so
that the transitions s → r → t correspond to very slight changes in the
classical orbitals (and differences approximate well to derivatives). The Bohr-
Sommerfeld quantization condition (1) associates action values Ji = nih with
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a given quantized state, so the formal correspondence principle becomes (cf.
eq. (48) in sec. 3.2):

δ~τF (~n) ≡ F (~n)− F (~n− ~τ) → h~τ · ~∇JF. (101)

In this notation, formula (99) the polarization can be written as

Pr =
Nrc

3

32π4
E cos 2πνt

∑
~τ

δ~τ

(
As→r

ν2
sr(ν

2
sr − ν2)

)
, (102)

with As→r given by Van Vleck’s “correspondence principle for emission” (see
eq. (76) and eq. (56))

As→r =
16π4e2

3hc3
D2

sν
3
sr, (103)

where D2
s = (X

(s)
~τ )2 + (Y

(s)
~τ )2 + (Z

(s)
~τ )2 is the full vector amplitude squared

for the Fourier component of the classical path responsible for the transition
~n + ~τ → ~n. Substituting eqs. (101) and (103) into eq. (102) and replacing the
difference frequency νsr by its classical counterpart ~τ · ~ν, we obtain, :

Pr = NrE cos 2πνt
c3

32π4

16π4e2

3hc3
h
∑

~τ ·~ν>0

~τ · ~∇J

(
~τ · ~νD2

s

(~τ · ~ν)2 − ν2

)

= Nr
e2

2
E cos 2πνt

∑
~τ ·~ν>0

~τ · ~∇J

(
~τ · ~ν 1

3
D2

s

(~τ · ~ν)2 − ν2

)
. (104)

With the replacement 1
3
D2

s → X2
~τ appropriate for randomly oriented atoms,

eq. (104) becomes identical to the classical formula (98). This shows that the
Kramers dispersion formula (99) does indeed merge with the classical result
in the limit of high quantum numbers, as Van Vleck set out to demonstrate.
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5 Derivation of the formulae for dispersion, emission, and absorp-
tion in modern quantum mechanics

Describing the impact of the new quantum mechanics on dispersion theory,
Van Vleck wrote in 1928:

Dispersion was particularly bothersome in the old quantum theory, which
could never explain why the resonance frequencies in dispersion were exper-
imentally the spectroscopic frequencies given by the Bohr frequency con-
dition rather than the altogether different frequencies of motion in orbits
constituting the stationary states [cf. our discussion in sec. 2.1]. The new
mechanics, however, yields the Kramers dispersion formula, previously de-
rived semi-empirically from the correspondence principle . . . As the result of
the masterful treatment by Dirac [1927], a mechanism has at last to a certain
extent been found for the previously so mysterious quantum jumps between
stationary states . . . Dirac’s work brings out nicely the parallelism between
matter and radiation, and their corpuscular and wave aspects, which are
complementary rather than contradictory (Van Vleck, 1928, 494–495).

In this paper, we will not follow the historical developments post-Umdeutung.
Instead we present in this section our own versions of the derivations of the
quantum formulae for dispersion (sec. 5.1), (spontaneous) emission (sec. 5.2),
and absorption (sec. 5.3) in modern quantum theory. Seeing how modern
quantum mechanics sanctions the formulae found by Kramers, Van Vleck and
others in the old quantum theory on the basis of Einstein’s quantum theory of
radiation and Bohr’s correspondence principle will illuminate various aspects
of the relation between the old and the new theory.

First, we show how the orchestra of virtual oscillators of pre-Umdeutung dis-
persion theory survives in the guise of a sum over matrix elements of the
position operator. Second, we show how the diagonal matrix elements of the
fundamental commutation relation for position and momentum, [X, P ] = i~,
are given by the high-frequency limit of the Kramers dispersion formula, a for-
mula known as the Thomas-Kuhn(-Reiche) sum rule (Thomas, 1925; Kuhn,
1925; Reiche and Thomas, 1925). This formula replaces the Bohr-Sommerfeld
condition as the fundamental quantization condition in the Umdeutung paper.
Heisenberg obtained the sum rule by applying the procedure introduced in the
Umdeutung paper for translating classical quantities into quantum-theoretical
ones to (a derivative of) the Bohr-Sommerfeld quantization condition. He then
showed that the sum rule also obtains by comparing the high-frequency limit
of the Kramers dispersion formula with the polarization of a charged harmonic
oscillator in the limit where ν >> ν0 (see our eq. (47)). In hindsight, we can
see clearly in the Umdeutung paper how close Heisenberg came to recognizing
the presence of the commutation relation between position and momentum in
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the sum rule serving as his quantization condition. What probably prevented
him from seeing this was an inconvenient division of the sum over quantum
states in the sum rule, which, though very natural from the point of dispersion
theory, obscured its connection to a commutator.

It will also become clear in the course of our modern derivation that the
Kramers dispersion formula is an even more general result in modern quantum
mechanics than it was in the old quantum theory. In the old quantum theory,
it held for any non-degenerate multiply-periodic system with an unperturbed
Hamiltonian such that the unperturbed motion can be solved in action-angle
variables. In modern quantum mechanics, the results holds for any system with
a Hermitian Hamilton operator such that the unperturbed part has a spectrum
that is at least partially discrete. This helps to explain why the Kramers
dispersion formula carries over completely intact from the old quantum theory
to modern quantum mechanics.

5.1 Dispersion

In this subsection, we derive the Kramers dispersion formula in time-dependent
perturbation theory. We then examine the high-frequency limit of this formula
and discuss the role it played in (Heisenberg, 1925c) paper as the fundamental
quantization condition replacing the Bohr-Sommerfeld condition.

We consider a quantized charged system (valence electron) with states labeled
by discrete indices r, s, t, ..., and with the Hamilton operator

H = H0 + V (t) = H0 + eEx cos ωt. (105)

We want to calculate the first-order perturbation (in the electric field E) in
the expectation value of the electron position in a particular state |r, t >. It
is convenient to work in the interaction picture. 126 The state |r, t >int in the
interaction picture is related to the state |r, t > in the Schrödinger picture via:

|r, t >int≡ eiH0t/~|r, t > . (106)

An operator Oint(t) in the interaction picture is related to the corresponding

126The special role of H0 in the time dependence of states and operators in the
interaction picture is analogous to the choice of action-angle variables for the free
rather than the full Hamiltonian in the version of canonical perturbation theory used
by Van Vleck. This is what lies behind the close similarities between the calculations
in this section and those in secs. 3.1 and 4.2.
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operator O in the Schrödinger picture via

Oint(t) ≡ eiH0t/~Oe−iH0t/~. (107)

It follows that expectation values are the same in the two pictures:

int< r, t|Oint(t)|r, t >int=< r, t|O|r, t > . (108)

The evolution of the states in the interaction picture is given by:

∂

∂t
|r, t >int =

i

~
eiH0t/~H0|r, t > +eiH0t/~ ∂

∂t
|r, t >

=
i

~
eiH0t/~ (H0 −H) |r, t >, (109)

where in the last step, we used the Schrödinger equation

∂

∂t
|r, t >= −iH

~
|r, t > . (110)

Since H0 −H = −V (t) (see eq. (105)), we can write eq. (109) as:

∂

∂t
|r, t >int =− i

~
eiH0t/~V (t)e−iH0t/~|r, t >int

=− i

~
Vint(t)|r, t >int, (111)

where we used eqs. (106)–(107). To first order in Vint(t) (i.e., to first order in
the field E), the solution of (111) is

|r, t >int = |r, 0 >int −
i

~

t∫
0

dτVint(τ)|r, 0 >int

= |r, 0 >int −
ieE

~

t∫
0

dτxint(τ) cos ωτ |r, 0 >int . (112)

At t = 0 the states (and operators) in the interaction picture coincide with
those in the Schrödinger picture. From now on we thus simply write |r > for
|r, 0 >int. The dual (‘bra’) of the vector (‘ket’) in eq. (112) is:

int< r, t| =< r|+ ieE

~

t∫
0

dτ cos ωτ < r|xint(τ). (113)
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To find the dipole moment Pr(t) of the system in state r to first order in
E, we calculate the first-order contribution to the expectation value of the
displacement < ∆x >r in the state r induced by the field E:

< ∆x >r≡ int< r, t|xint(t)|r, t >int − < r|xint(t)|r > . (114)

Inserting eqs. (112)–(113) into this expression, we find:

< ∆x >r=
ieE

~

t∫
0

dτ < r| {xint(τ)xint(t)− xint(t)xint(τ)} |r > cos ωτ.(115)

Writing cos ωτ = 1
2
(eiωτ + e−iωτ ), and inserting a complete set of eigenstates

of the unperturbed Hamiltonian H0 (1 =
∑

s |s >< s|) between the two coor-
dinate operators, we obtain

< ∆x >r =
ieE

2~
∑
s

t∫
0

dτ
(
< r|eiH0τ/~xe−iH0τ/~|s >< s|eiH0t/~xe−iH0t/~|r >

− < r|eiH0t/~xe−iH0t/~|s >< s|eiH0τ/~xe−iH0τ/~|r >
)
eiωτ

+ (ω → −ω)

=
ieE

2~
∑
s

t∫
0

dτ
(
ei(Er−Es+~ω)τ/~ei(Es−Er)t/~

−ei(Er−Es)t/~ei(Es−Er+~ω)τ/~
)

< r|x|s >< s|x|r > (116)

+ (ω → −ω).

We introduce the notation Xrs ≡< r|x|s > for the matrix elements of the coor-
dinate operator. Note that these matrix elements in eq. (116) are accompanied
by time-development phases ei(Er−Es)t/~ of purely harmonic form: they are the
precise correlates in modern quantum mechanics of the Ersatz-oscillators of
Ladenburg and Reiche (1923) or, equivalently, the virtual oscillators of BKS,
as was clearly realized, for instance, by Landé (1926).

Performing the time integral in eq. (116), we find

< ∆x >r =
eE

2

∑
s

[
ei(Er−Es+~ω)t/~ − 1

Er − Es + ~ω
ei(Es−Er)t/~

−ei(Es−Er+~ω)t/~ − 1

Es − Er + ~ω
ei(Er−Es)t/~

]
XrsXsr (117)

+ (ω → −ω).
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(cf. eqs. (36) and (38) in sec. 3.1 and eqs. (88) and (92) in sec. 4.2). The
coherent terms in < ∆x >r, i.e. the terms with a time-dependence e±iωt (cf.
eq. (40) in sec. 3.1 and eq. (95) in sec. 4.2), are:

< ∆xcoh >r =
eE

2

∑
s

XrsXsre
iωt
[

1

Er − Es + ~ω
− 1

Es − Er + ~ω

]
(118)

+ (ω → −ω).

Using the Bohr frequency condition ~ωrs = Er −Es, we can write the expres-
sion in square brackets in eq. (118) as:

1

~ωrs + ~ω
− 1

~ωsr + ~ω
=

2ωrs

~(ω2
rs − ω2)

. (119)

Inserting this result into eq. (118) and noting that the terms proportional to
sin ωt vanish, we find the following result for the dipole moment of the system
in state r (cf. eq. (6) or eq. (47))

Pr(t) = −e < ∆xcoh >r=
2e2E

~
∑
s

ωsrXrsXsr

ω2
sr − ω2

cos ωt. (120)

The sum over s can naturally be separated into states s of higher energy than
r, with ωsr > 0, and states t of lower energy, with ωrt > 0 (ωrt = 0 for r = t):

Pr =
2e2E

~

(∑
s

ωsrXsrXrs

ω2
sr − ω2

−
∑

t

ωrtXrtXtr

ω2
rt − ω2

)
cos ωt. (121)

If we recall the correspondence principle for emission (76), and identify D2
s

with 3(Xs
τ )

2 = 12AτA−τ and the Fourier coefficients Aτ → Xsr, A−τ → Xrs

we get

As→r =
64π4e2

hc3
ν3

srXsrXrs, (122)

whence we recover the original form (58) of the dispersion formula

Pr =
c3

32π4
E cos ωt

(∑
s

As→r

ν2
sr(ν

2
sr − ν2)

−
∑

t

Ar→t

ν2
rt(ν

2
rt − ν2)

)
. (123)

Of course, the above identification of classical Fourier components with matrix
elements of the position operator is at the core of Heisenberg’s 1925 break-
through.

85



Returning for a moment to eq. (121), we see that in the Thomson limit where
the frequency of incident radiation far exceeds the difference frequencies ωrs

for the electron states r, s, 127 the polarization Pr becomes asymptotically

Pr ' −2e2E

~ω2
(
∑
s

ωsrXsrXrs −
∑

t

ωrtXrtXtr) cos ωt. (124)

The preceding equation is in content identical with the next to last (unnum-
bered) equation in sec. 2 of (Heisenberg, 1925c), where the Kramers dispersion
theory is explicitly invoked. For large frequencies, we expect the polarization
to approach our previously derived result (see eq. (6) or eq. (47)) for the
polarization of a charged harmonic oscillator in the limit where ν >> ν0:

128

Pr = − e2E

mω2
cos ωt, (125)

Comparing eq. (124) with eq. (125) we find eq. (16) in (Heisenberg, 1925c):

h = 4πm(
∑
s

ωsrXsrXrs −
∑

t

ωrtXrtXtr). (126)

This result is first obtained by Heisenberg from the Bohr-Sommerfeld quanti-
zation condition by applying the quantum-theoretical transcription procedure,
which was introduced in sec. 1 of the Umdeutung paper and had been inspired
by dispersion theory. It replaces the Bohr-Sommerfeld condition as the fun-
damental quantization constraint in Heisenberg’s new theory. That the same
result can be obtained directly from the high-frequency limit of the Kramers
dispersion formula is clearly regarded by Heisenberg as strong evidence for
the validity of his transcription procedure. Using eq. (126), together with the
formal transcription of the classical equation of motion, ẍ+f(x) = 0 (eq. (11)
of the Umdeutung paper), Heisenberg asserts the possibility of “a complete
determination not only of frequencies and energy values, but also of quantum-
theoretical transition probabilities” (Heisenberg, 1925c, 268). As Heisenberg
points out, eq. (126) is completely equivalent to the sum rules for oscillator
strengths derived by Thomas (1925) and Kuhn (1925). 129

127Or, alternatively, when the incident photon energy far exceeds the energy needed
to ionize the electron, so that the latter can be regarded as essentially a free, un-
bound particle
128This result is obtained in (Kuhn, 1925) by equating the energy scattered by an
electron in the Thomson limit to the radiation emitted by an oscillating dipole
according to the Larmor formula.
129Heisenberg’s logic is slightly different from ours. Instead of pointing out that
the high-frequency limit (124) of the Kramers dispersion formula and the well-
established classical result (125) imply Heisenberg’s quantization condition (126),
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The realization that eq. (126) is equivalent to (the diagonal matrix elements
of) the fundamental commutator relation [P, X] = ~/i of modern quantum
theory came shortly after this, in the work of Born and Jordan (1925b). The
recognition of eq. (126) as a commutator is mathematically obscured by the
separation of the sum into states higher (s) and lower (t) than the given
state r—a separation which is very natural given the history of the Kramers
dispersion formula. If Heisenberg had applied his own transcription rules for
associating classical variables with quantum two-index quantities to the mo-
mentum P ≡ mẊ in the unnumbered equation immediately following (13) in
the Umdeutung paper (Heisenberg, 1925c, 267), he would have found (using
modern matrix notation) 130

Prs = imωrsXrs. (127)

Rewriting eq. (126) as a single sum over all states s, but splitting the sum into
two equal pieces via the identity 2ωsr = ωsr − ωrs, we find

h = 4πm
∑
s

ωsrXrsXsr

= 2πm
∑
s

(XrsωsrXsr − ωrsXrsXsr) (128)

=−2πi
∑
s

(XrsPsr − PrsXsr),

where in the last step we used eq. (127). In modern notation, this last expres-
sion is immediately recognized as the diagonal matrix element of the funda-
mental commutator [X, P ] = i~:

i
h

2π
= < r|XP − PX|r >

Heisenberg (1925c, 269–270) points out that eqs. (126) and (124) imply eq. (125).
This is only a cosmetic difference. The point of the exercise is still to show that the
new quantization condition, found through Umdeutung of the derivative of the Bohr-
Sommerfeld condition, follows from well-established results in Kramers’ dispersion
theory and classical electrodynamics. We are nonetheless grateful to Christoph
Lehner for alerting us to this point.
130Following Heisenberg’s procedure in the Umdeutung paper for translating classi-
cal equations into quantum-mechanical ones, we would translate his classical equa-
tion for momentum, mẋ = m

∑
α aα(n)iαωneiαωnt, into the following quantum-

mechanical equation: P (n, n + α) = ima(n, n + α)ω(n, n + α). In modern notation,
this becomes: Prs = imXrsωrs (no summation). That Heisenberg did not write
down this equation is probably because he was thinking in terms of the Lagrange
formalism (with q-s and q̇-s) and not in terms of the Hamilton formalism (with q-s
and p-s).
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=
∑
s

(< r|X|s >< s|P |r > − < r|P |s >< s|P |r >). (129)

Although Heisenberg recognized the significance of the noncommutativity of
quantum-theoretic quantities in his formalism (see the last three paragraphs
of section 1), the simplicity of x(t)p(t)− p(t)x(t) implied by his fundamental
quantization relation (126) eluded him, probably because the origin of that
relation in dispersion theory prevented him from rewriting the summations
the way we did in eq. (128).

5.2 Spontaneous emission

To begin with, we note that we are dealing throughout with the dipole ap-
proximation, which is implicit in the 1924 work, corresponding to the regime
where the wavelength of light is much larger than atomic dimensions (or equiv-
alently, where photon momentum is much smaller than electron momentum).
Once again, note that the notation of (Van Vleck, 1924b, eq. (1)),

x =
∑

τ1τ2τ3

X(τ1, τ2, τ3) cos {2π(τ1ω1 + τ2ω2 + τ3ω3)t + . . .}

=
∑{

1

2
X(τ1, τ2, τ3)e

+2πi(τ1ω1+τ2ω2+τ3ω3)t+... (130)

+
1

2
X(τ1, τ2, τ3)e

−2πi(τ1ω1+τ2ω2+τ3ω3)t+...
}

,

implies that van Vleck’s D2 = X2 + Y 2 + Z2 (Van Vleck, 1924b, line follow-
ing eq. (8)) corresponds to four times the square of the matrix element of
the quantum position operator appearing in the dipole transition formulas of
modern quantum mechanics. For the latter we shall follow the treatment of
(Baym, 1969, Ch. 13).

In the dipole approximation, the spontaneously emitted power per unit solid
angle is given by (Baym, 1969, 282, eq. 13–100), for emitted light of polariza-

tion vector ~λ, in a transition from state r to state s:

dP

dΩ
=

ω4e2

2πc3
< r|~λ · ~x|s >< s|~λ · ~x|r >

=
3∑

i,j=1

ω4e2

2πc3
λiλj < r|xi|s >< s|xj|r > . (131)

Here (unlike Baym) we take real polarization vectors ~λ (plane polarized) rather
than complex (circularly polarized) ones as our basis. We want the total spon-
taneously emitted power in any event, summed over the two possible polar-
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izations for any momentum vector ~k of the emitted photon (so the basis of
photon states is irrelevant). This requires the polarization sum

2∑
λ=1

λiλj = δij − k̂ik̂j, (i, j = 1, 2, 3), (132)

which follows from the fact that the two polarization vectors are any pair of
orthogonal unit vectors perpendicular to the unit vector k̂ along the photon
direction. Finally, we want the total power emitted in any direction, so the
polarization sum (132) must be integrated over all solid angles:∫

dΩk̂(δij − k̂ik̂j) = 4π(
2

3
δij). (133)

The Einstein coefficient Ar→s in (Van Vleck, 1924b, eqs. (5) and (9)) refers to
a rate of photon emission (not energy emission) so we must divide eq. (131)
by ~ω. Putting together the above results (and switching to ν = ω/2π), we
find:

Ar→s =
1

~ω

∫
dΩk̂

dP

dΩk̂

=
ω4e2

2π~ωc3

8π

3

∑
i

< r|xi|s >< s|xi|r > . (134)

Using the notation Xrs ≡< r|x|s >, etc. for the matrix elements of position
introduced above we can rewrite this as:

Ar→s =
ω4e2

2π~ωc3

8π

3

(
|Xrs|2 + |Yrs|2 + |Zrs|2

)
. (135)

Replacing the matrix elements Xrs, Yrs, and Zrs by the amplitude Dr in the
correspondence limit as indicated in the preceding section (cf. the remarks
preceding eq. (122)) and substituting ω = 2πν, we arrive at:

Ar→s =
16π4e2ν3

3hc3
D2

r . (136)

D2
r is the amplitude defined by (Van Vleck, 1924b) immediately following eq.

(8), to be replaced by Dr(τ1, τ2, τ3)
2 in eq. (9), with which eq. (136) is seen to

be identical.

5.3 Absorption

The Einstein formula for absorption (Van Vleck, 1924b, eq. (6)), when com-
bined with the stimulated emission (“negative absorption”) term to yield
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(ibid., eq. 15)), leads directly to the correspondence limit result (ibid., eq.
(16)). Here, we check the identity of eq. (15) in (Van Vleck, 1924b) (more
precisely, the unnumbered equation immediately following this one) with the
modern absorption calculation given in (Baym, 1969). For the rate of absorp-
tion of light leading to a transition from state s to (higher) state r, (Baym,
1969, eq. 13–40) reads (in dipole approximation, ~j~k → ~p/m):

Γabs
s→r =

2πe2

~2c2

ω2

(2πc)3

∫
dΩk̂

∑
λ

< s|~λ · ~p

m
|r >< r|~λ · ~p

m
|s > |A~k~λ|

2. (137)

As usual, in dipole approximation we can use (Baym, 1969, eq. 13–98) to
replace matrix elements of the momentum operator with those of the coordi-
nate operator (using the equations of motion). For Hamiltonians of the form
H = (~p2/2m) + V (~x),

[H, xj] =
1

2m
[pipi, xj] =

1

m
pi[pi, xj] =

pi

m

~
i
δij =

~
i

pj

m
, (138)

whence

< r| ~p
m
|s > =

i

~
< r|[H,~x]|s >

=
i

~
(Er − Es) < r|~x|s > (139)

= iω < r|~x|s >,

where ~ω = Er − Es. Once again, in eq. (139), we see the “monstrous” dif-
ference frequencies characteristic of quantum theory, which wreaked havoc on
classical interpretations of radiation phenomena, making their appearance in
the modern formalism. Accordingly, eq. (137) becomes

Γabs
s→r =

2πe2

~2c2

ω4

(2πc)3

∫
dΩk̂

∑
λ

< s|λixi|r >< r|λjxj|s > |A~k~λ|
2. (140)

Now we are going to assume that the ambient light is unpolarized and isotropic
so that the squared amplitude |A~k~λ|2 is in fact independent of λ, k̂, and the
only angular dependence comes in via the polarization vectors. The angle
average of the polarization sum in eq. (140) can then be performed as in eq.
(133) to yield

Γabs
s→r =

4πe2

3~2c2

ω4

(2πc)3
< s|xi|r >< r|xi|s >

∫
dΩk̂|A~k~λ|

2. (141)
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Next, we need to establish the relation between the squared mode amplitudes
|A~k~λ|2 and the specific energy density function ρ(ν) defined as the energy per
unit volume per unit frequency interval. The mode amplitudes A~k~λ correspond
to discrete modes for electromagnetic radiation in a box of volume V , with
each mode contributing energy density

1

V
|A~k~λ|

2 ω

2πc2
(142)

(Baym, 1969, eq. 13–14). As the box volume goes to infinity we have the usual
correspondence

1

V

∑
k

→
∫ k2dkdΩk̂

(2π)3
, (143)

so that the total energy density between frequency ν and frequency ν + ∆ν is

ρ(ν)∆ν =
1

V

∑
2πν<kc<2π(ν+∆ν)

2|A~k~λ|
2 ω2

2πc2

→ 1

(2π)3

∫
dΩk̂

2π(ν+∆ν)/c∫
2πν/c

dk k2 ω2

2πc2
2|A~k~λ|

2. (144)

Note that although we continue to write the mode amplitudes A~k~λ as de-
pending on polarization and momentum vector of the photon, we are really
assuming that there is no dependence on the polarization or photon direction.
Hence the factor of 2, with no remaining sum over λ. Eq. (144) gives

ρ(ν)∆ν =
1

(2π)3

2π

c
k2 ω2

2πc2
2
∫

dΩk̂|A~k~λ|
2∆ν, (145)

or, equivalently∫
dΩk̂|A~k~λ|

2 =
4π3c5

ω4
ρ(ν). (146)

Inserting eq. (146) into eq. (141) and multiplying by ~ω to get the rate of
energy absorption (instead of the number rate of photon absorption) we find,
using the usual association of squares of matrix elements of the position op-
erator to the classical orbit amplitude 1

4
D2

r ,

~ωΓabs
s→r =

4πe2ω

3~c2

ω4

(2πc)3

4π3c5

ω4
ρ(ν)

1

4
D2

r
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=
2π3e2

3h
νρ(ν)D2

r , (147)

which coincides with the first term in van Vleck’s equation (Van Vleck, 1924b,
following eq. (15)) for the part of the total absorption rate due to upward tran-
sitions. Of course, the second (negative absorption, or stimulated emission)
term is of exactly the same form (with a minus sign) due to the symmetry of
the Einstein B coefficients.
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6 Conclusion

Our study of Van Vleck’s two-part paper on the application of the correspon-
dence principle to the interaction of matter and radiation (Van Vleck, 1924b,c)
has led us to consider three clusters of questions. First, there are questions
about the paper itself. What made Van Vleck decide to work in this area?
He had not published on radiation theory before. And—as one is inevitably
tempted to ask—why did Van Vleck not take the next step and arrive at some-
thing like matrix mechanics? That gets us to the second cluster of questions,
about the developments in quantum theory that provide the natural context
for Van Vleck’s work, especially the transition of the old quantum theory
of Bohr and Sommerfeld to matrix mechanics. What was important for this
development and what was not? The third group of questions concerns the
relative importance of American contributions to these developments. In this
final section we collect the (partial) answers we have found to these biograph-
ical, conceptual, and sociological questions.

Let us first dispose of the issue of American contributions to early quantum
theory. Since we focused on the work of only two individuals, Van Vleck and
Slater, we are in no position to draw strong conclusions. Still, it seems safe
to say that our study supports the thesis of Sam Schweber (1986) and others
that, by the early 1920s, the United States had a homegrown tradition in
quantum theory, which, to be sure, was reinforced, but certainly not created
by the influx of European émigrés in the 1930s. We are less sanguine about
the thesis of Alexi Assmus (1992) that American theorists contributed mainly
to molecular rather than to atomic physics, although she may be right that
Slater and Van Vleck are just the exception to the rule (see note 28). However,
we did come across several other contributions (some admittedly minor) to
atomic theory by Americans (Breit, Davisson, Hoyt, Kemble) or by Europeans
working in America (Epstein, Swann). And we do want to emphasize that the
contributions to atomic theory by our main protagonists were absolutely first
rate, even if they did not always receive the recognition they deserved from
their European colleagues (see the correspondence between Born and Van
Vleck cited in secs. 1.4 and 3.2). The quickly refuted but highly influential
Bohr-Kramers-Slater (BKS) theory was built around Slater’s idea of a virtual
radiation field emitted by an atom while in a stationary state (see sec. 2.2).
The derivation of a correspondence principle of absorption for a general non-
degenerate multiply-periodic system, the centerpiece of (Van Vleck, 1924b,c),
is a tour de force that may well have been the most sophisticated application
of the correspondence principle in the old quantum theory. All in all, the
Americans had definitely established a presence in atomic theory by the early
1920s. In the period we examined, they were certainly more prominent than
the British, not to mention the French. One could argue that this casts doubt
on the famous thesis of Paul Forman (1971) about the importance of Weimar
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culture for the breakthrough to quantum mechanics. Our study, however, does
not allow any firm conclusions on this score. Those skeptical of the Forman
thesis will emphasize parallels between developments in Europe and America,
such as those between the work of Kramers and Van Vleck in dispersion theory
documented in our study. Those enamored of the Forman thesis, however, can
counter that, despite such parallels, it was in Europe, and not in America,
that ultimately the decisive steps were taken.

This brings us to the question of why Van Vleck stopped short of these deci-
sive steps. Before we offer our best guess as to why Van Vleck did not do what
he did not do, we want to say a few words about why he did what he did. His
papers on the correspondence principle for absorption (Van Vleck, 1924a,b,c)
constitute his first foray into quantum radiation theory. His earlier publica-
tions had dealt with such topics as the extension of Bohr’s model of the atom
to Helium and the specific heat of molecular hydrogen. The formulation of a
correspondence principle for absorption, Van Vleck told Kuhn in his interview
for the AHQP in 1963, had been triggered by a comment of his Minnesota
colleague Breit (see also Van Vleck, 1924a, 28). Breit’s remark, we conjec-
tured (at the end of sec. 3.3), may have directed Van Vleck to the work of
Ladenburg and Reiche (1923), who proposed quantum formulae for emission,
absorption, and dispersion, invoking but not always correctly implementing
the correspondence principle. Van Vleck used the correspondence principle to
construct his own quantum formulae for these three phenomena and used his
considerable expertise in classical mechanics to show that they merged with
the classical formulae in the limit of high quantum numbers. In this way, Van
Vleck independently confirmed many of the results in dispersion theory found
by Kramers (1924a,b) and further elaborated in (Kramers and Heisenberg,
1925). (Van Vleck, 1924b) certainly contains all the results of (Kramers and
Heisenberg, 1925) that are important for Heisenberg’s Umdeutung paper.

So why did Van Vleck not take the next step? The trivial explanation is that
he was too busy working on his Bulletin for the National Research Council on
the old quantum theory (Van Vleck, 1926a) to pursue his own research. But
even if he had not been burdened by this Bulletin, we seriously doubt that
Van Vleck would have done what Heisenberg did—as he himself acknowledged
both in a biographical statement prepared for the AHQP and in his interview
for the project (see sec. 1.4). Van Vleck, it seems, was too wedded to the orbits
of the Bohr-Sommerfeld theory to completely discard them, a prerequisite for
Heisenberg’s Umdeutung. This is clear at several points in (Van Vleck, 1924b).
At the end of sec. 1, for instance, we find a formula expressing the Einstein
coefficient Ar→s as an average over the frequencies of orbits, not allowed by
the Bohr-Sommerfeld quantization condition, between the initial state r and
the final state s. Sec. 2 of the paper is devoted to “a correspondence principle
for orbital distortions” (Van Vleck, 1924b, 334, our emphasis). On the issue
of how seriously one should take the orbits of the Bohr-Sommerfeld theory,
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Van Vleck might have benefited from direct contact with the Europeans. He
had the distinct disadvantage of reading Sommerfeld instead of talking to Bohr
and his circle. 131 Bohr and Pauli certainly prepared Heisenberg for the step
of leaving orbits behind.

The emphasis on observable quantities in the Umdeutung paper, however,
struck a chord with Van Vleck, who had been primed for such a positivist turn
by his Harvard teacher Bridgman. 132 Explaining the new quantum mechanics
in Chemical Reviews in 1928, 133 he wrote:

Heisenberg’s epoch-making development of the matrix theory was spurred
by Born’s repeated emphasis to his colleagues at Göttingen that the reason
the old quantum theory was then (1925) failing was that we were all too
anxious to use the same concepts of space and time within the atom as
in ordinary measurable large-scale events. . . . the concepts of distance and
time have a meaning only when we tell how they can be measured. This is
very nicely emphasized in Bridgman’s recent book, “The Logic of Modern
Physics.” [Bridgman, 1927] . . . one cannot use a meter stick to measure the
diameter of an atom, or an alarm clock to record when an electron is at
the perihelion of its orbit. Consequently we must not be surprised if within
the atom the correlation of space and time is something which cannot be
visualized, and that models cannot be constructed with the same kind of
mechanics as Henry Ford uses in designing an automobile. . . . The goal of
theoretical physics and chemistry must ever be to explain observable rather
than unobservable phenomena . . .What the physicist observes about an
atom is primarily its radiations . . .We may say that we have a sound atomic
theory when we have a set of a small number of mathematical postulates
from which these observed things can be calculated correctly, even though
it forces us to discard the usual space-time models (Van Vleck, 1928, 468).

Van Vleck was thus ready enough to give up orbits once Heisenberg (and
Born) had shown the way. He failed to take this step on his own.

Studying Van Vleck’s paper has made us appreciate various aspects of the

131According to Alexi Assmus (1992, 8, 15), Americans had a tendency to follow
Sommerfeld rather than Bohr anyway.
132At a ceremony honoring Bridgman’s 1946 Nobel prize, Slater suggested that there
might even be a genetic connection between Bridgman’s operationalism and Heisen-
berg’s uncertainty principle! Schweber (1990, 391) quotes Slater as saying on this
occasion: “It is very likely that this principle, so much like Bridgman’s attitude, is
actually derived to a very considerable extent from Bridgman’s thinking.”
133For the benefit of the chemists, Van Vleck (1928, 469) compared a matrix to a
baseball schedule: “the entry in row 3 and column 2, for instance, gives information
about a transition between a 3 and 2 quantum state, just as the analogous baseball
entry does about the meetings between teams 3 and 2.”
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transition from the old quantum theory to matrix mechanics that tend to get
obscured when one approaches these developments through, say, (Kramers and
Heisenberg, 1925). Most importantly perhaps, following (Van Vleck, 1924b,c)
rather than (Kramers and Heisenberg, 1925) or (Born, 1924, 1925), we were
able to give an illuminating, transparent, and explicit version of the deriva-
tion needed to show that the crucial Kramers dispersion formula reduces to
the classical formula in the limit of high quantum numbers (see secs. 3.1–3.2
for the special case of a simple harmonic oscillator, sec. 4.2 for the general-
ization to arbitrary non-degenerate multiply-periodic systems, and sec. 5.1 for
a closely analogous derivation of the Kramers formula in modern quantum
mechanics). That Van Vleck confirmed the Kramers dispersion formula with-
out relying on the Bohr-Kramers-Slater (BKS) theory makes it particularly
clear that matrix mechanics grew directly out of dispersion theory and that
BKS was mainly a sideshow (see sec. 2.2). The only element of the BKS the-
ory used by Van Vleck is the concept of virtual oscillators. We saw that this
concept actually predates BKS. ‘Virtual oscillators’ was Bohr’s new name for
the Ersatz-oscillators introduced into dispersion theory the year before and at
Bohr’s suggestion by Ladenburg and Reiche (1923). In addition to populariz-
ing the notion of virtual oscillators, BKS may have contributed to instilling
skepticism about the electron orbits of the Bohr-Sommerfeld theory (MacK-
innon, 1977, 1982). In that sense, it might have helped Van Vleck had he
embraced BKS more wholeheartedly. Overall, however, we argued that BKS
played no role in the breakthrough to matrix mechanics. The same is true for
the broad acceptance of Einstein’s light-quantum concept following the dis-
covery of the Compton effect. Physicists working in dispersion theory, while
accepting the Compton effect as decisive evidence for light quanta, happily
continued to treat light as a wave phenomenon.

What was it about dispersion theory that made it so important for the transi-
tion from the Bohr-Sommerfeld theory to the theory of Heisenberg’s Umdeu-
tung paper? As we argued in sec. 2.1, the answer is that the discrepancy
between orbital frequencies and radiation frequencies—one of the most radi-
cal, if not the most radical aspect of the Bohr model of the atom—manifested
itself glaringly and unavoidably in dispersion theory. The natural approach
to adapting the successful classical dispersion theory of Lorentz and Drude
to Bohr’s new theory inevitably led to a dispersion formula with resonance
poles at the orbital frequencies (Sommerfeld, 1915b; Debye, 1915; Davisson,
1916; Epstein, 1922c), whereas experiment clearly indicated that the reso-
nance poles should be at the radiation frequencies, associated in Bohr’s theory
with transitions between orbits. Employing Einstein’s quantum theory of ra-
diation and Bohr’s correspondence principle (in conjunction with techniques
from celestial mechanics customized to the problems at hand) and building
on pioneering work by Ladenburg (1921) and Ladenburg and Reiche (1923),
Kramers (1924a,b) constructed a quantum formula for dispersion with reso-
nance poles at the transition frequencies rather than at the orbital frequencies
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and claimed that this formula merged with the classical formula in the limit
of high quantum numbers. Van Vleck (1924b,c) was the first to publish an
explicit proof that the Kramers quantum formula does indeed merge with the
classical formula for dispersion in a general non-degenerate multiply-periodic
system in the correspondence limit. The three key moves in translating the
classical formula into a quantum-theoretical one were to (1) replace orbital
frequencies by transition frequencies; (2) relate amplitudes to Einstein’s A co-
efficients; and (3) replace derivatives with respect to the action variable by
difference quotients. The first move goes back to the embryonic version of the
correspondence principle in (Bohr, 1913) (Heilbron and Kuhn, 1969, 274–275).
Ladenburg (1921) introduced the second move. It was made more precise by
Kramers and Van Vleck (cf. Jordan’s remarks quoted in note 32). Born (1924)
is usually credited with the third move and the rule for replacing derivatives
by difference quotients is sometimes even called “Born’s correspondence rule”
(Jammer, 1966, 193) or ”Born’s discretizing rule” (Cassidy, 1991, 181). It was
found independently, however, by both Kramers and Van Vleck (see the dis-
cussion at the end of sec. 3.2).

The Kramers dispersion formula no longer contains any reference to the or-
bits of the Bohr-Sommerfeld theory, but only to transitions between them.
This signaled to Heisenberg that orbits could be dispensed with altogether.
Dispersion theory further told Heisenberg how to generate quantum formulae
from classical formulae in his Umdeutung scheme. The procedure consisted of
the same three moves listed above: one had to replace (1) classical frequencies
(more specifically: the Fourier overtones of the classical mechanical motion) by
quantum transition frequencies; (2) classical amplitudes associated with defi-
nite orbits by quantum transition amplitudes associated with pairs of station-
ary states; and (3) derivatives by difference quotients. Dispersion theory also
furnished the fundamental quantization condition for Heisenberg’s new theory.
Heisenberg formulated this condition by applying his Umdeutung procedure
to the Bohr-Sommerfeld quantum condition, which was no longer acceptable
because of its explicit reference to orbits. That Heisenberg’s new condition
also emerged in the high-frequency limit of the Kramers dispersion formula
(see sec. 5.1) convinced him that he had found a sensible replacement for the
Bohr-Sommerfeld condition. The relevant formula had been found in quantum
dispersion theory before and was known as the Thomas-Kuhn(-Reiche) sum
rule (Thomas, 1925; Kuhn, 1925; Reiche and Thomas, 1925). As we saw in
sec. 2.1, Van Vleck actually was the first to find this rule, even though he did
not emphasize the result because he thought it was problematic. According
to Roger Stuewer (private communication), Van Vleck was nonetheless very
proud of this achievement and used to mention it with pride to various col-
leagues in his later years. The Kramers dispersion formula and its corollary,
the Thomas-Kuhn sum rule, are the critical physical ingredients in the first
two sections of (Heisenberg, 1925c), in which the Umdeutung procedure is mo-
tivated. Van Vleck was fully cognizant of these same ingredients by mid-1924.
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Van Vleck can thus truly be said to have been on the verge of Umdeutung in
Minnesota in the summer of 1924.
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