60 research outputs found
Systematics of Inclusive Photon Production in 158 AGeV Pb Induced Reactions on Ni, Nb, and Pb Targets
The multiplicity of inclusive photons has been measured on an event-by-event
basis for 158 AGeV Pb induced reactions on Ni, Nb, and Pb targets. The
systematics of the pseudorapidity densities at midrapidity (rho_max) and the
width of the pseudorapidity distributions have been studied for varying
centralities for these collisions. A power law fit to the photon yield as a
function of the number of participating nucleons gives a value of 1.13+-0.03
for the exponent. The mean transverse momentum, , of photons determined
from the ratio of the measured electromagnetic transverse energy and photon
multiplicity, remains almost constant with increasing rho_max. Results are
compared with model predictions.Comment: 16 pages including 4 figure
Scaling of Particle and Transverse Energy Production in 208Pb+208Pb collisions at 158 A GeV
Transverse energy, charged particle pseudorapidity distributions and photon
transverse momentum spectra have been studied as a function of the number of
participants (N_{part}) and the number of binary nucleon-nucleon collisions
(N_{coll}) in 158 A GeV Pb+Pb collisions over a wide impact parameter range. A
scaling of the transverse energy pseudorapidity density at midrapidity as
N_{part}^{1.08 \pm 0.06} and N_{coll}^{0.83 \pm 0.05} is observed. For the
charged particle pseudorapidity density at midrapidity we find a scaling as
N_{part}^{1.07 \pm 0.04} and N_{coll}^{0.82 \pm 0.03}. This faster than linear
scaling with N_{part} indicates a violation of the naive Wounded Nucleon Model.Comment: 13 pages, 16 figures, submitted to European Physical Journal C
(revised results for scaling exponents
Freeze-Out Parameters in Central 158AGeV Pb+Pb Collisions
Neutral pion production in central 158AGeV Pb+Pb collisions has been studied
in the WA98 experiment at the CERN SPS. The pi0 transverse mass spectrum has
been analyzed in terms of a thermal model with hydrodynamic expansion. The high
accuracy and large kinematic coverage of the measurement allow to limit
previously noted ambiguities in the extracted freeze-out parameters. The
results are shown to be sensitive to the shape of the velocity distribution at
freeze-out.Comment: 5 pages including 3 figures, small changes due to review process,
accepted for publication in Phys.Rev.Let
Direct Photon Production in 158 AGeV Pb+Pb Collisions
A measurement of direct photon production in Pb+Pb collisions at 158 AGeV has
been carried out in the CERN WA98 experiment. The invariant yield of direct
photons in central collisions is extracted as a function of transverse momentum
in the interval 0.5 < pT < 4 GeV/c. A significant direct photon signal,
compared to statistical and systematical errors, is seen at pT > 1.5 GeV/c. The
results constitute the first observation of direct photons in ultrarelativistic
heavy-ion collisions which could be significant for diagnosis of quark gluon
plasma formation.Comment: Talk presented at Nucleus-Nucleus 2000, Strasbourg, Franc
Limits on the production of direct photons in 200 A GeVS + Au collisions
A search for the production of direct photons in S+Au collisions at 200\cdotA~GeV has been carried out in the CERN-WA80 experiment. For central collisions the measured photon excess at each p_T, averaged over the range 0.5~GeV/c~ \leq p_T \leq 2.5~GeV/c, corresponded to 5.0\% of the total inclusive photon yield with a statistical error of \sigma_{\rm stat}=0.8\% and a systematic error of \sigma_{\rm syst}=5.8\%. Upper limits on the invariant yield for direct photon production at the 90\%~C.L. are presented. Possible implications for the dynamics of high-energy heavy-ion collisions are discussed
Directed Flow in 158 A GeV + Collisions
The directed flow of protons and positive pions have been studied in 158 A GeV Pb + Pb collisions. A directed flow analysis of the rapidity dependence of the average transverse momentum projected onto the reaction plane is presented for semi-central collisions with impact parameters of approximately 8 fm, where the flow effect is largest. The magnitude of the directed flow is found to be significantly smaller than observed at AGS energies and than RQMD model predictions.The directed flow of protons and positive pions have been studied in 158 A GeV Pb + Pb collisions. A directed flow analysis of the rapidity dependence of the average transverse momentum projected onto the reaction plane is presented for semi-central collisions with impact parameters of approximately 8 fm, where the flow effect is largest. The magnitude of the directed flow is found to be significantly smaller than observed at AGS energies and than RQMD model predictions
The ALICE experiment at the CERN LHC
ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008
Solving a Deconvolution Problem in Photon Spectrometry
We solve numerically a deconvolution problem to extract the undisturbed spectrum from the measured distribution contaminated by the finite resolution of the measuring device. A problem of this kind emerges when one wants to infer the momentum distribution of the neutral pions by detecting the it decay photons using the photon spectrometer of the ALICE LHC experiment at CERN {[}1]. The underlying integral equation connecting the sought for pion spectrum and the measured gamma spectrum has been discretized and subsequently reduced to a system of linear algebraic equations. The latter system, however, is known to be ill-posed and must be regularized to obtain a stable solution. This task has been accomplished here by means of the Tikhonov regularization scheme combined with the L-curve method. The resulting pion spectrum is in an excellent quantitative agreement with the pion spectrum obtained from a Monte Carlo simulation. (C) 2010 Elsevier B.V. All rights reserved
- …