604 research outputs found
Antimatter spectra from a time-dependent modeling of supernova remnants
We calculate the energy spectra of cosmic rays (CR) and their secondaries
produced in a supernova remnant (SNR), taking into account the time-dependence
of the SNR shock. We model the trajectories of charged particles as a random
walk with a prescribed diffusioncoefficient, accelerating the particles at each
shock crossing. Secondary production by CRs colliding with gas is included as a
Monte Carlo process. We find that SNRs produce less antimatter than suggested
previously: The positron/electron ratio and the antiproton/proton ratio are a
few percent and few , respectively. Both ratios do not rise
with energy.Comment: 4 pages, 4 eps figures; v2: results for time-dependent magnetic field
adde
A Multi-dimensional Code for Isothermal Magnetohydrodynamic Flows in Astrophysics
We present a multi-dimensional numerical code to solve isothermal
magnetohydrodynamic (IMHD) equations for use in modeling astrophysical flows.
First, we have built a one-dimensional code which is based on an explicit
finite-difference method on an Eulerian grid, called the total variation
diminishing (TVD) scheme. Recipes for building the one-dimensional IMHD code,
including the normalized right and left eigenvectors of the IMHD Jacobian
matrix, are presented. Then, we have extended the one-dimensional code to a
multi-dimensional IMHD code through a Strang-type dimensional splitting. In the
multi-dimensional code, an explicit cleaning step has been included to
eliminate non-zero at every time step. To estimate the
proformance of the code, one- and two-dimensional IMHD shock tube tests, and
the decay test of a two-dimensional Alfv\'{e}n wave have been done. As an
example of astrophysical applications, we have simulated the nonlinear
evolution of the two-dimensional Parker instability under a uniform gravity.Comment: Accepted for publication in ApJ, using aaspp4.sty, 22 text pages with
10 figure
EP-1378: Should pelvic radiotherapy be tailored to early patient-reported gastrointestinal toxicity?
Co-Occurrence Patterns of Common and Rare Leaf-Litter Frogs, Epiphytic Ferns and Dung Beetles across a Gradient of Human Disturbance
Indicator taxa are commonly used to identify priority areas for conservation or to measure biological responses to environmental change. Despite their widespread use, there is no general consensus about the ability of indicator taxa to predict wider trends in biodiversity. Many studies have focused on large-scale patterns of species co-occurrence to identify areas of high biodiversity, threat or endemism, but there is much less information about patterns of species co-occurrence at local scales. In this study, we assess fine-scale co-occurrence patterns of three indicator taxa (epiphytic ferns, leaf litter frogs and dung beetles) across a remotely sensed gradient of human disturbance in the Ecuadorian Amazon. We measure the relative contribution of rare and common species to patterns of total richness in each taxon and determine the ability of common and rare species to act as surrogate measures of human disturbance and each other. We find that the species richness of indicator taxa changed across the human disturbance gradient but that the response differed among taxa, and between rare and common species. Although we find several patterns of co-occurrence, these patterns differed between common and rare species. Despite showing complex patterns of species co-occurrence, our results suggest that species or taxa can act as reliable indicators of each other but that this relationship must be established and not assumed
The mass and energy budget of Cassiopeia A
Further analysis of X-ray spectroscopy results recently obtained from the MOS
CCD cameras on-board XMM-Newton provides a detailed description of the hot and
cool X-ray emitting plasma in Cas A. Measurement of the Doppler broadening of
the X-ray lines is consistent with the expected ion velocities, ~1500 km/s
along the line of sight, in the post shock plasma. Assuming a constant total
pressure throughout the remnant we estimate the total remnant mass as 10 Msun
and the total thermal energy as 7E43 J. We derive the differential mass
distribution as a function of ionisation age for both X-ray emitting
components. This distribution is consistent with a hot component dominated by
swept up mass heated by the primary shock and a cool component which are
ablated clumpy ejecta material which were and are still being heated by
interaction with the preheated swept up material. We calculate a balanced mass
and energy budget for the supernova explosion giving 1E44 J in ejected mass;
approximately 0.4 Msun of the ejecta were diffuse with an initial rms velocity
of 15000 km/s while the remaining ~1.8 Msun were clumpy with an initial rms
velocity of ~2400 km/s. Using the Doppler velocity measurements of the X-ray
spectral lines we can project the mass into spherical coordinates about the
remnant. This provides quantitative evidence for mass and energy beaming in the
supernova explosion. The mass and energy occupy less than 4.5 sr (<40 % of the
available solid angle) around the remnant and 64 % of the mass occurs in two
jets within 45 degrees of a jet axis. We calculate a swept up mass of 7.9 Msun
in the emitting plasma and estimate that the total mass lost from the
progenitor prior to the explosion could be as high as ~20 Msun.Comment: 8 pages, 7 figures, submitted to Astronomy & Astrophysic
Genome and gene alterations by insertions and deletions in the evolution of human and chimpanzee chromosome 22
<p>Abstract</p> <p>Background</p> <p>Understanding structure and function of human genome requires knowledge of genomes of our closest living relatives, the primates. Nucleotide insertions and deletions (indels) play a significant role in differentiation that underlies phenotypic differences between humans and chimpanzees. In this study, we evaluated distribution, evolutionary history, and function of indels found by comparing syntenic regions of the human and chimpanzee genomes.</p> <p>Results</p> <p>Specifically, we identified 6,279 indels of 10 bp or greater in a ~33 Mb alignment between human and chimpanzee chromosome 22. After the exclusion of those in repetitive DNA, 1,429 or 23% of indels still remained. This group was characterized according to the local or genome-wide repetitive nature, size, location relative to genes, and other genomic features. We defined three major classes of these indels, using local structure analysis: (i) those indels found uniquely without additional copies of indel sequence in the surrounding (10 Kb) region, (ii) those with at least one exact copy found nearby, and (iii) those with similar but not identical copies found locally. Among these classes, we encountered a high number of exactly repeated indel sequences, most likely due to recent duplications. Many of these indels (683 of 1,429) were in proximity of known human genes. Coding sequences and splice sites contained significantly fewer of these indels than expected from random expectations, suggesting that selection is a factor in limiting their persistence. A subset of indels from coding regions was experimentally validated and their impacts were predicted based on direct sequencing in several human populations as well as chimpanzees, bonobos, gorillas, and two subspecies of orangutans.</p> <p>Conclusion</p> <p>Our analysis demonstrates that while indels are distributed essentially randomly in intergenic and intronic genomic regions, they are significantly under-represented in coding sequences. There are substantial differences in representation of indel classes among genomic elements, most likely caused by differences in their evolutionary histories. Using local sequence context, we predicted origins and phylogenetic relationships of gene-impacting indels in primate species. These results suggest that genome plasticity is a major force behind speciation events separating the great ape lineages.</p
Interteaching: Discussion group size and course performance
Researchers have yet to examine whether discussion group size affects student performance in an interteaching-based course. In the current study, we addressed this question by manipulating discussion group size (smaller groups of 2 students vs. larger groups of 4 students) across 2 sections of an undergraduate psychology course. We found no significant differences between the sections on 6 unit exams, on a cumulative final exam, and in the total number of points earned across the semester
An adjustable law of motion for relativistic spherical shells
A classical and a relativistic law of motion for an advancing shell are
deduced applying the thin layer approximation. A new parameter connected with
the quantity of absorbed matter in the expansion is introduced; this allows of
matching theory and observation.Comment: 15 pages, 10 figures and article in press; Central European Journal
of Physics 201
Temporomandibular joint damage in juvenile idiopathic arthritis: Diagnostic validity of diagnostic criteria for temporomandibular disorders
Diagnostic criteria reported in the expanded taxonomy for temporomandibular disorders include a standardised clinical examination and diagnosis (DC/TMD 3.B) of temporomandibular joint (TMJ) damage in patients with juvenile idiopathic arthritis (JIA); however, their validity is unknown
- …