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ABSTRACT
We present a multidimensional numerical code to solve isothermal magnetohydrodynamic (IMHD)

equations for use in modeling astrophysical Ñows. First we have built a one-dimensional code which is
based on an explicit Ðnite-di†erence method on an Eulerian grid, called the total variation diminishing
(TVD) scheme. The TVD scheme is a second-orderÈaccurate extension of the Roe-type upwind scheme.
Recipes for building the one-dimensional IMHD code, including the normalized right and left eigen-
vectors of the IMHD Jacobian matrix, are presented. Then we have extended the one-dimensional code
to a multidimensional IMHD code through a Strang-type dimensional splitting. In the multidimensional
code, an explicit cleaning step has been included to eliminate nonzero $ Æ B at every time step.

To test the code, IMHD shock tube problems, which encompass all the physical IMHD structures,
have been constructed. One-dimensional and two-dimensional shock tube tests have shown that the code
captures all the structures correctly without producing noticeable oscillations. Strong shocks are resolved
sharply, but weaker shocks spread more. Numerical dissipation (viscosity and resistivity) has been esti-
mated through the decay test of a two-dimensional wave. It has been found to be slightly smallerAlfve� n
than that of the adiabatic magnetohydrodynamic code based on the same scheme. As an example of
astrophysical applications, we have simulated the nonlinear evolution of the two-dimensional Parker
instability under a uniform gravity.
Subject headings : instabilities È methods : numerical È MHD È shock waves

1. INTRODUCTION

Over the last two decades, conservative upwind di†erencing schemes have proven to be very efficient for solving adiabatic
hydrodynamic and magnetohydrodynamic (MHD) equations. These methods generally depend on the calculated estimates of
mass, momentum, and energy Ñuxes as well as magnetic Ðeld Ñux across cell boundaries based on the so-called Riemann
solutions from the basic conservation laws. Examples for hydrodynamics include extensions of GodunovÏs scheme (Godunov
1959) such as the MUSCL scheme (Van Leer 1979) and the PPM scheme (Colella & Woodward 1984) as well as those based
on approximate Ñow eigenstates such as the RoeÏs scheme (Roe 1981), the TVD scheme (Harten 1983), and the ENO scheme
(Harten et al. 1987). Works for MHD include Brio & Wu (1988), Zachary & Colella (1992), Zachary, Malagoli, & Colella
(1994), Dai & Woodward (1994a, 1994b), Ryu & Jones (1995) (hereafter RJ), Ryu, Jones, & Frank (1995) (hereafter RJF),
Powell et al. (1995), and Roe & Balsara (1996). Brio & Wu applied the RoeÏs approach to the MHD equations. Zachary and
collaborators used the BCT scheme to estimate Ñuxes for the MHD conservation equations. Dai & Woodward adapted the
PPM scheme to MHD. Ryu and collaborators extended the HartenÏs (1983) TVD scheme to MHD. Powell and collaborators
developed a Roe-type Riemann solver with an eight-wave structure for MHD. Roe & Balsara constructed one variety of
linearized Riemann solutions for MHD. The upwind schemes generally share an ability to sharply and cleanly deÐne Ñuid
discontinuities, especially shocks, and exhibit a robustness that makes them broadly applicable.

The assumption of adiabatic Ñows holds in the limit where cooling is negligible or the cooling timescale is much larger than
the dynamical timescale. However, in the other limit, where the cooling timescale is much shorter than the dynamical
timescale, the assumption of isothermal Ñows becomes physically more valid (e.g., Draine & McKee 1993 and references
therein). Of course, if cooling timescale is comparable to dynamical timescale, cooling should be considered explicitly.

Usually numerical simulations of isothermal Ñows are made with adiabatic codes by setting the adiabatic index, c, close to
unity. Truelove et al. (1998) showed that with c as close as to unity as 1.001, their adiabatic hydrodynamic code can follow
isothermal collapse without any signiÐcant deterioration of accuracy. We also observed that with c\ 1.001 the adiabatic
TVD MHD code (RJ) captures structures in isothermal magnetohydrodynamic (IMHD) shock tubes without noticeable
error. Yet, it is desirable to build codes speciÐcally for isothermal Ñows, since those codes are simpler and faster than adiabatic
ones. That is because the energy conservation equation need not be solved in isothermal codes. As a result, the entropy mode,
which carries the contact discontinuity, need not to be considered. In the current paper we describe an IMHD code based on
HartenÏs (1983) TVD scheme. It is the same scheme that was used for the adiabatic MHD code in RJ and RJF. Balsara (1998b)
developed an IMHD code also based on an upwind scheme, but his scheme is di†erent from ours.

In ° 2 we give recipes for the development of one-dimensional and multidimensional IMHD codes. In ° 3, we present the
results of tests that include one-dimensional and two-dimensional shock tube problems, the decay of an wave, and theAlfve� n
nonlinear evolution of the Parker instability under a uniform gravity. Conclusions follow in ° 4.
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2. NUMERICAL SCHEME

2.1. T he Equations for Isothermal Magnetohydrodynamics
MHDs describes the behavior of the combined system of a conducting Ñuid and magnetic Ðelds in the limit that the

displacement current and the separation between ions and electrons are neglected. So the MHD equations represent coupling
of the equations of Ñuid dynamics with MaxwellÏs equations of electrodynamics. By ignoring the e†ects of electrical resistivity,
viscosity, and thermal conductivity, and imposing isothermality on the conducting Ñuid, we get the following IMHD
equations :

Lo
Lt

] $ Æ (o¿) \ 0 , (2.1)

L¿
Lt

] ¿ Æ $v] 1
o

$(a2o) [ 1
o

($ Â B) Â B \ 0 , (2.2)

LB
Lt

[ $ Â (¿ Â B) \ 0 , (2.3)

with an additional constraint,

$ Æ B \ 0 , (2.4)

for the absence of magnetic monopoles. Here a is an isothermal sound speed, and other notations have their usual meanings.
We incorporate a factor of 1/(4n)1@2 into the deÐnition of B so that the factor of 4n does not appear in equation (2.2).

In Cartesian coordinates, the above equations are written in a conservative form as

Lq
Lt

] LF
x

Lx
] LF

y
Ly

] LF
z

Lz
\ 0 , (2.5)

q \

(

t

:

t

t

t

t

t

t

o
ov

x
ov

y
ov

z
B
x

B
y

B
z

)

t

;

t

t

t

t

t

t

, F
x
\

(

t

:

t

t

t

t

t

t

ov
x

ov
x
2] a2o ] (B

y
2] B

z
2[ B

x
2)/2

ov
x
v
y
[ B

x
B

y
ov

x
v
z
[ B

x
B

z
0

v
x
B

y
[ v

y
B

x
v
x
B

z
[ v

z
B

x

)

t

;

t

t

t

t

t

t

, (2.6)

with and obtained by properly permuting indices. With the state vector q and the Ñux functions andF
y

F
z

F
x
(q), F

y
(q), F

z
(q),

the Jacobian matrices, and are formed. A system is called hyperbolic if all theA
x
(q)\ LF

x
/Lq, A

y
(q)\ LF

y
/Lq, A

z
(q) \ LF

z
/Lq

eigenvalues of the Jacobian matrices are real and distinct and the corresponding set of right eigenvectors is complete (Je†rey
& Taniuti 1964). The system of the ideal, adiabatic MHD equations is known as nonstrictly hyperbolic, since some eigenvalues
coincide at some points (Brio & Wu 1988 ; Roe & Balsara 1996). The eigenstructure of the IMHD equations, which is
presented in the next subsection, is very similar to that of the adiabatic ones. It is easy to show that the IMHD equations also
form a nonstrictly hyperbolic system.

2.2. One-dimensional Code
Our strategy for developing a one-dimensional IMHD code is based the TVD scheme (Harten 1983), which was devised to

improve the Ðrst-orderÈaccurate RoeÏs upwind scheme (Roe 1981) into a second-orderÈaccurate one. We derive for it the
eigenvalues and eigenvectors of the system of the IMHD equations, which are given below. With the eigenvalues and
eigenvectors, it is straightforward to apply the construction procedure for the one-dimensional adiabatic MHD code (RJ) to
an isothermal analogue. Even though the procedure is described in RJ, we here repeat it to make this paper self-contained.
Special attention is given to the orthonormal eigenvectors of the system of the IMHD equations.

We consider, as an example, plane-symmetric, one-dimensional Ñows exhibiting variation along the x-direction. Then y-
and z-derivatives in equation (2.5) are zero, and we have the one-dimensional IMHD equations

Lq
Lt

] LF
x

Lx
\ 0 , (2.7)

where q and are deÐned in equation (2.6). The Ðfth equation in the system of equation (2.7) is and the constraintF
x

LB
x
/Lt \ 0,

in equation (2.4) is These imply that initially should be spatially constant and should be kept constant duringLB
x
/Lx \ 0. B

xthe evolution of the Ñow. So we need not include the equation for in a one-dimensional code.B
xThe Jacobian matrix of the system of equation (2.7) is given byLF

x
/Lq
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where The six eigenvalues in nondecreasing order areb
x,y,z\ B
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where are the fast, and slow characteristic speeds, respectively. There is no entropy mode for the IMHDc
f
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a
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s
Alfve� n,

equations. The quantities . . . , represent the six speeds with which information is propagated locally by three MHDa1, a6wave families. The three characteristic speeds are expressed as
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The six right eigenvectors corresponding to the six eigenvalues are
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Near the point where either or the above right eigenvectors are not well deÐned, with some elementsb
x
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y
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\ 0,

becoming singular. By renormalizing the eigenvectors, the singularities can be removed. The renormalized right eigenvectors
are
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where aÏs and bÏs are deÐned by
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Some elements in the normalized right and left eigenvectors are not continuous. In order to force them to be continuous,
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Note that our eigenvectors have a di†erent form from those derived in Balsara (1998a). The exact form of the eigenvectors
does not matter once all the singular points are taken care of.

Here we use the conventional indices. The superscript n represents the time step. The subscript i indicates quantities at the
cell center, while marks those at the right-hand cell boundary. The subscript k represents the characteristic Ðelds, withi ] 12the order that k \ 1 is for the Ðeld associated with eigenvalue k \ 2 for the Ðeld with k \ 3 for the Ðeld withv
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An important step in the Roe (1981) scheme is to determine a Roe matrix at the cell boundary from theA1
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i`1)adjacent state vectors, which satisÐes the RoeÏs suggested properties. One of them is ForF
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the systems of the adiabatic and isothermal hydrodynamic equations, there exists a Roe matrix evaluated at the Jo-weighted
average state (Roe 1981 ; LeVeque 1997). For the system of the adiabatic MHD equations, there is, however, no simple form of
the Roe matrix except for the case with an adiabatic index c\ 2 (Brio & Wu 1988). We also have failed to Ðnd a simple form
of the Roe matrix for the system of the IMHD equations. So we use an arithmetic averaging for the Ñow quantities at the cell
boundary in the IMHD code, which was shown to work well in the adiabatic MHD code (RJ) :
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The state vector q at the cell center is updated by calculating the modiÐed Ñuxes at the cell boundaries as follows :f 6
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Since the use of contact steepener and rotational steepener produces spurious numerical oscillations in the adiabatic MHD
code (RJ ; RJF), we do not include the rotational steepener in the IMHD code. The time step size *tn is restricted by the usual
Courant condition for stability, with*tn\ Ccour *x/max ( o v

x,i`1@2n o ] c
f,i`1@2n ), Ccour \ 1.

2.3. Multidimensional Code
We extend the one-dimensional IMHD code to more dimensions by using a Strang-type directional splitting (Strang 1968).

Here we explain, as an example, the implementation of it in two-dimensional plane-parallel geometry. The two-dimensional
IMHD equations written in the conservative form (eq. [2.5]) can be split into
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In a time step, we update the state vector q(x, y) along the x-direction with y Ðxed, followed along the y-direction with x Ðxed,

qn`1\ L
y
L
x
qn . (2.33)

In order to maintain a second-order accuracy in time, the order of directional sweeps is permuted in the next time step by
The time step size, *t, is calculated at the start of the one complete sequence of and Ðxed through theL
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L
xsequence.

In multidimensional simulations, numerical solutions may not satisfy $ Æ B \ 0 because of discretization errors. Brackbill
& Barnes (1980) pointed out that errors of nonzero $ Æ B appear as a force parallel to the Ðeld. Nonzero $ Æ B can be removed,
for instances, either by incorporating an explicit divergence cleaning method as described in RJF or by implementing a scheme
similar to the constrained transport scheme (Evans & Hawley 1988), which was described in detail for the adiabatic MHD
code in Ryu et al. (1998). Tests in the next section have been done using the explicit divergence cleaning method, and the next
two paragraphs describe it brieÑy.

At the beginning of MHD simulations, $ Æ B \ 0 is satisÐed. The updated magnetic Ðeld B, which is not in general
divergence-free, can be decomposed as into two parts,

B \ [$/] $ Â V , (2.34)

where / and V are scalar and vector functions, respectively. Then the corrected magnetic Ðeld deÐned as Bc \ B ] $/
becomes divergence-free. So the problem of the divergence-cleaning is reduced to Ðnd /, which is described by the Poisson
equation

$2/\ [ $ Æ B . (2.35)
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In two-dimensional Cartesian geometry, for instance, the following Ðnite di†erence representations

B
x,i,jc \ B

x,i,j]
/
i`1,j[ /

i~1,j
2*x

, B
y,i,jc \ B

y,i,j ]
/

i,j`1[ /
i,j~1

2*y
, (2.36)

together with

/
i`2,j[ 2/

i,j ] /
i~2,j

(2*x)2 ] /
i,j`2[ 2/

i,j ] /
i,j~2

(2*y)2 \ [
AB

x,i`1,j [ B
x,i~1,j

2*x
] B

y,i,j`1 [ B
y,i,j~1

2*y
B

, (2.37)

ensures

B
x,i`1,jc [ B

x,i~1,jc

2*x
] B

y,i,j`1c [ B
x,i,j~1c

2*y
\ 0 , (2.38)

within machine round-o† error. Extensions to the three-dimension and/or to other geometry are straightforward.
Equation (2.37) is solved with boundary conditions speciÐc to problems. In the problems with periodic boundaries (as in the

decay test of the wave in ° 3.2), a fast Poisson solver based on the fast Fourier transform can be used. In the nonlinearAlfve� n
simulation of the Parker instability in ° 3.3 with reÑection boundaries along one direction, the computational domain is
doubled to that direction and the resulting boundaries are enforced to be periodic. In the two-dimensional shock tube tests in
° 3.1.2, doubling the computational domain in both directions also makes the resulting boundaries periodic. Note that in
equation (2.37) /Ïs are coupled with those at every other cell in a column and row. So the (extended) computational domain is
divided into four subdomains, and /Ïs are computed in those subdomains separately.

3. TESTS

In this section we present the results of three tests. The Ðrst and the second are isothermal versions of MHD shock tubes
and decay of an wave, respectively (RJ ; RJF). The shock tube test shows the ability of the IMHD code to handle all theAlfve� n
three MHD wave family structures, while the decay test of an wave measures numerical dissipation. The third test isAlfve� n
the simulation of a real astrophysical situation, the nonlinear evolution of the Parker instability under a uniform gravity. In
all the tests, we set the isothermal speed a \ 1.

3.1. Shock Tube Tests
Based on the work of RJ, we have devised four shock tube problems that include discontinuities and rarefaction waves of

IMHDs. To conÐrm the validity of our numerical solutions we have compared them to the analytic solutions obtained with
an exact, nonlinear MHD Riemann solver described in RJ. That Riemann solver iterates from an initial guess of the solution
for the full set of MHD waves based on the given left and right states. Iteration continues until the solutions to the innermost
wave zone reached from the two opposite directions agree within some speciÐed limit (in practice, a relative error 10~5). The
four shock tube solutions that we have applied in the test described below are listed in Table 1. andCcour \ 0.8 v1\ v6\ 0.3
(for fast modes), (for modes), (for slow modes) have been used in the shock tube testv2\ v5 \ 0.0 Alfve� n v3\ v4\ 0.3
calculations.

3.1.1. One-dimensional Shock Tube Tests

The one-dimensional simulations of the shock tube problems have been done with 512 cells in a computational tube
bounded by x \ [0,1]. We plot in the following Ðgures the resulting o, and at each cell with open circles andB

y
, B

z
, v

x
, v

y
, v

zthe analytic solutions with lines.
Figure 1a shows the result of the Ðrst shock tube problem at t \ 0.1 with the initial condition of a left state [o \ 1,

a right state [o \ 0.1, andv
x
\ 0, v

y
\ 0, v

z
\ 0, B

y
\ 5/(4n)1@2, B

z
\ 0], v

x
\ 0, v

y
\ 0, v

z
\ 0, B

y
\ 2/(4n)1@2, B

z
\ 0], B

x
\

3/(4n)1@2. It exhibits the capturing of a fast rarefaction wave, a slow rarefaction wave, a slow shock, and a fast shock whose
structures are plotted in the Ðgure from left to right. There is no contact discontinuity. The fast and slow shocks are resolved
sharply within several cells. In order to see the capturing rotational discontinuities, we have set up the initial condition of the
second shock tube problem as a left state [o \ 1.08, a rightv

x
\ 1.2, v

y
\ 0.01, v

z
\ 0.5, B

y
\ 3.6/(4n)1@2, B

z
\ 2/(4n)1@2],

state [o \ 1, and Figure 1b shows the result at t \ 0.2.v
x
\ 0, v

y
\ 0, v

z
\ 0, B

y
\ 4/(4n)1@2, B

z
\ 2/(4n)1@2], B

x
\ 2/(4n)1@2.

There are two fast shocks propagating outmost, and two slow shocks interior to those. Two rotational discontinuities lie
between the fast and slow shocks. Here the strong fast shocks are resolved sharply, but the weak slow shocks and rotational
discontinuities spread over more cells. The third shock tube problem has been set up with the initial condition of a left state
[o \ 0.12, v

x
\ 24, v

y
\ 0, v

z
\ 0, B

y
\ 3/(4n)1@2, B

z
\ 0], a right state [o \ 0.3, v

x
\ [15, v

y
\ 0, v

z
\ 0, B

y
\ 0, B

z
\

and Two oppositely moving magnetosonic shocks and a tangential discontinuity at t \ 0.2 are shown in3/(4n)1@2], B
x
\ 0.

Figure 1c. The magnetosonic shocks are again resolved sharply, but the tangential discontinuity spreads over D20 cells. In
the fourth shock tube problem, the initial condition has been set up with a left state (o \ 1, v

x
\[1, v

y
\ 0, v

z
\ 0, B

y
\

a right state (o \ 1, and The result at t \ 0.16 in Figure 1d shows1, B
z
\ 0), v

x
\ 1, v

y
\ 0, v

z
\ 0, B

y
\ 1, B

z
\ 0), B

x
\ 0.

two oppositely moving identical magnetosonic rarefactions.

3.1.2. T wo-dimensional Shock Tube Tests

The two-dimensional simulations of the shock tube problems have been done with 256] 256 cells in a computational
domain bounded by x \ [0,1] and y \ [0,1]. Initially, the domain is divided into two parts by a diagonal line joining the two
points (0, 1) and (1, 0). The left state of the initial conditions for the one-dimensional shock tube problems has been assigned to
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TABLE 1

SHOCK TUBE TEST

o v
x

v
y

v
z

B
y

B
z

Test 1 : B
x
\ 8.4628E[01

1.0000E]00 . . . . . . 0.0000E]00 0.0000E]00 0.0000E]00 1.4105E]00 0.0000E]00
5.7648E[01 . . . . . . 9.3200E[01 [5.3737E[01 0.0000E]00 5.9825E[01 0.0000E]00
3.0968E[01 . . . . . . 1.3718E]00 [1.0767E[02 0.0000E]00 7.8902E[01 0.0000E]00
1.2358E[01 . . . . . . 7.2565E[01 [7.6338E[01 0.0000E]00 9.0720E[01 0.0000E]00
1.0000E[01 . . . . . . 0.0000E]00 0.0000E]00 0.0000E]00 5.6419E[01 0.0000E]00

Test 2 : B
x
\ 5.6419E[01

1.0800E]00 . . . . . . 1.2000E]00 1.0000E[02 5.0000E[01 1.0155E]00 5.6419E[01
1.5087E]00 . . . . . . 6.4673E[01 1.3132E[01 5.6740E[01 1.4677E]00 8.1542E[01
1.5087E]00 . . . . . . 6.4673E[01 2.4196E[01 3.0857E[01 1.6036E]00 4.9750E[01
1.7451E]00 . . . . . . 6.0765E[01 7.3388E[02 2.5628E[01 1.4736E]00 4.5716E[01
1.3560E]00 . . . . . . 5.4030E[01 [2.1440E[01 1.6699E[01 1.6825E]00 5.2198E[01
1.3560E]00 . . . . . . 5.4030E[01 [1.2262E[01 [6.1311E[02 1.5757E]00 7.8783E[01
1.0000E]00 . . . . . . 0.0000E]00 0.0000E]00 0.0000E]00 1.1284E]00 5.6419E[01

Test 3 : B
x
\ 0.0000E ] 00

1.2000E[01 . . . . . . 2.4000E]01 2.3130E[16 0.0000E]00 8.4628E[01 4.4409E[16
1.7079E]00 . . . . . . 9.2149E[02 2.3130E[16 0.0000E]00 1.2045E]01 6.3206E[15
4.1960E]00 . . . . . . 9.2149E[02 0.0000E]00 0.0000E]00 7.2478E[16 1.1837E]01
3.0000E[01 . . . . . . [1.5000E]01 0.0000E]00 0.0000E]00 0.0000E]00 8.4628E[01

Test 4 : B
x
\ 0.0000E ] 00

1.0000E]00 . . . . . . [1.0000E]00 0.0000E]00 0.0000E]00 1.0000E]00 0.0000E]00
4.6392E[01 . . . . . . 7.8159E[08 0.0000E]00 0.0000E]00 4.6392E[01 0.0000E]00
1.0000E]00 . . . . . . 1.0000E]00 0.0000E]00 0.0000E]00 1.0000E]00 0.0000E]00

the lower left part and the right state to the upper right part. The generated structures, including discontinuities and
rarefactions, propagate parallel to the other diagonal line joining the two points (0, 0) and (1, 1).

In Figures 2a and 2b, two-dimensional correspondences of Figures 1a and 1b are plotted. In the Ðgures, the following
subscripts are used : p for parallel components of velocity and magnetic Ðeld along the diagonal line joining the two points (0,
0) and (1, 1), o for perpendicular components that are still in the computational plane, and z for components that are out of
the plane. Although the resolution of the two-dimensional simulations, 256 ] 256 cells, is lower than that of the one-
dimensional ones, 512 cells, we see that all the structures have been captured correctly.

3.2. Decay of an WaveAlfve� n
RJF carried out a test of the decay of linear waves in order to estimate numerical dissipations (resistivity and viscosity) in

their adiabatic MHD code. Following the same idea, the decay of a linear wave has been calculated and numericalAlfve� n
dissipation in our IMHD code has been estimated. The IMHD equations for viscous and resistive Ñuid can be written as

Lo
Lt

] $ Æ (o¿) \ 0 , (3.1)

L¿
Lt

] ¿ Æ $v] 1
o

$(a2o) [ 1
o

($ Â B) Â B \ 1
o

L
k
p
ik

, (3.2)

LB
Lt

[ $ Â (¿ Â B) \ g$2B . (3.3)

In the momentum equation, the viscosity tensor is given byp
ik

p
ik

\ k(L
k
v
i
] L

i
v
k
[ 23d

ik
$ Æ ¿) ] fd

ik
$ Æ ¿ , (3.4)

where k and f are the dynamic shear and bulk viscosity, and g is the electrical resistivity. Under uniform density, ando0,uniform magnetic Ðeld, the complex angular frequency of waves is predicted from the linear analysis to beB \ B0 xü , Alfve� n

u\ i
2
A k
o0

] g
B
k2^ cA k

C
1 [ 1

4cA2
A k
o0

[ g
B2

k2
D1@2

, (3.5)

where is the speed along the wave propagation direction and is the total wavenum-cA \ (B02/2o0)1@2 Alfve� n k \ (k
x
2] k

y
2)1@2

ber. Note that the complex angular frequency of the isothermal waves is exactly the same as that of the adiabatic onesAlfve� n



FIG. 1a

FIG. 1b

FIG. 1.ÈOne-dimensional IMHD shock tube tests. (a) The initial condition is (o, 0, 0, 0, 5/(4n)1@2, 0] in the left region,v
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(o, 0, 0, 0, 2/(4n)1@2, 0] in the right region, and and a \ 1 for the whole computational interval. A snapshot at t \ 0.1v
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, B

y
, B

z
)\ [0.1, B

x
\ 3/(4n)1@2

shows from left to right (1) fast rarefaction, (2) slow rarefaction, (3) slow shock, and (4) fast shock. (b) The initial condition is (o, 1.2,v
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) \ [1.08,

0.01, 0.5, 3.6/(4n)1@2, 2/(4n)1@2] in the left region, (o, 0, 0, 0, 4/(4n)1@2, 2/(4n)1@2] in the right region, and and a \ 1 for thev
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)\ [1, B
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\ 2/(4n)1@2

whole computational interval. A snapshot at t \ 0.2 shows from left to right (1) fast shock, (2) rotational discontinuity, (3) slow shock, (4) slow shock, (5)
rotational discontinuity, and (6) fast shock. (c) The initial condition is (o, 24, 0, 0, 3/J4n, 0) in the left region, (o,v
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[0.3, [15, 0, 0, 0, 3/(4n)1@2] in the right region, and and a \ 1 for the whole computational interval. A snapshot at t \ 0.2 shows from left to right (1)B
x
\ 0

magnetosonic shock, (2) tangential discontinuity, and (3) magnetosonic shock. (d) The initial condition is (o, [1, 0, 0, 1, 0) in the leftv
x
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region, (o, 1, 0, 0, 1, 0) in the right region, and and a \ 1 for the whole computational interval. A snapshot at t \ 0.16 showsv
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)\ (1, B
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from left to right (1) magnetosonic rarefaction, and (2) magnetosonic rarefaction. Open circles represent the numerical solution, while lines represent the
analytic solution with an exact nonlinear Riemann solver. The calculations have been done with 512 cells.
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FIG. 2a

FIG. 2b

FIG. 2.È Two-dimensional IMHD shock tube tests. (a) The initial condition is (o, 0, 0, 0, 5/(4n)1@2, 0] in the lower left region, (o,v
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0, 0, 0, 2/(4n)1@2, 0] in the upper right region, and and a \ 1 in the whole computational domain. The structures shown atv
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)\ [0.1, B
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along a diagonal line joining the two points (0, 0) to (1, 1) are same as those of Fig. 1a. (b) The initial condition is (o, 1.2,t \ 0.1J2 v
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0.01, 0.5, 3.6/(4n)1@2, 2/(4n)1@2] in the lower left region, (o, 0, 0, 0, 4/(4n)1@2, 2/(4n)1@2] in the upper right region, and andv
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, v
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, v
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, B

M
, B
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A
\ 2/(4n)1@2

a \ 1 in the whole computational domain. The structures shown at along a diagonal line joining the two points (0, 0) to (1, 1) are same as those oft \ 0.2J2
Fig. 1b. Open circles represent the numerical solution, while lines represent the analytic solution with an exact nonlinear Riemann solver. The calculations
have been done with 256] 256 cells.
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(RJF). We deÐne the decay rate as

!A \ 1
2
A k
o0

] g
B
k2 . (3.6)

For the decay test of a linear wave with the IMHD code, we have set up an initial condition such that,Alfve� n o0\ 1,
and all other quantities are equal to zero. The calculations have been done in adv

z
\ vamp cA sin (k

x
x] k

y
y), B \ 1 Æ xü ,

square periodic box with size L \ 1 using from 8 ] 8 cells to 128] 128 cells by increasing twice the number of cells in each
direction. We set Numerical parameters used are and (the result is not sensitive to thesek

x
\ k

y
\ 2n/L . v

k
\ 0 Ccour\ 0.9

values). Figure 3a shows the decay of the wave calculated with 32] 32 cells. By Ðtting the peak points of the decayAlfve� n
pattern with respect to time, we have estimated decay rate. In Figure 3b the resulting normalized decay rates as well as

FIG. 3a

FIG. 3b

FIG. 3.È(a) Time evolution of and in the decay test of a two-dimensional wave. Initially a standing wave has been set upSdB
z
2T1@2 Sdv

z
2T1@2 Alfve� n Alfve� n

in a computational domain with 32] 32 cells, and its oscillation has been followed. (b) Normalized decay rate and magnetic Reynolds number, R,!
A

L /C
A
,

as a function of cells along one direction of the computation domain. At a given resolution, the peak-to-peak decay rate of the rms of z-velocity (top) and the
corresponding Reynolds number (bottom) are plotted with Ðlled circles, respectively. The calculations have been done with 8] 8, 16] 16, 32 ] 32, 64 ] 64,
and 128 ] 128 cells. For comparison, dotted lines of and are drawn.(!

A
L /c

A
)P ncell~2 RP ncell2
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Reynolds numbers (see RJF for deÐnition) are shown. Numerical Reynolds numbers scale almost as indicating thatRP ncell2 ,
the code has a second-order accuracy. Compared to the adiabatic MHD code, the IMHD code has smaller (up to 50%)
numerical dissipation. This is partly because the IMHD code has one less mode (entropy mode).

3.3. Parker Instability under a Uniform Gravity
Nonlinear development of the Parker instability under a point-massÈdominated gravity was simulated by Matsumoto and

his collaborators (Matsumoto et al. 1988 ; Matsumoto et al. 1990 ; Matsumoto & Shibata 1992). And recently, Basu, Mous-
chovias, & Paleologou (1996, 1997) simulated the nonlinear evolution of the Parker instability under a uniform gravity. As the
Ðnal test of our IMHD code, we have also followed the nonlinear evolution of the Parker instability under the uniform
gravity. By comparing our results with those in Basu et al. (1996), the codeÏs ability to handle a practical problem of
astrophysics can be proved.

Since the Parker system is assumed initially to be in an isothermal equilibrium, an IMHD code is a natural tool for
simulations. In the IMHD equations, the externally given gravity is treated as a source term and placed on the rightgzü
hand-side of equation (2.5) with the source vector deÐned by S \ (0, 0, 0, 0, 0, 0)T. The gravity has the z-component[gv

z
,

only, so the source term is evaluated only when the state vector is updated along the z-axis

Lq
Lt

] LF
z

Lz
\ S . (3.7)

Since we use the Strang-type directional splitting in order to reduce multidimensional problems to one-dimensional ones, we
also use the same technique to split the hyperbolic system with a source term into two parts, part A,

Lq
Lt

] LF
z

Lz
\ 0 , (3.8)

and part B,

Lq
Lt

\ S . (3.9)

Part A is solved by the TVD algorithm, and part B by a forward time di†erence. To minimize a ““ splitting error,ÏÏ part A and
part B are solved by a BAB sequence with time step size 0.5*t for part B and *t for part A. The step size *t is determined from
the Courant condition.

The Parker system composed of isothermal gas and magnetic Ðeld takes under the uniform gravity an equilibriumyü B0(z)conÐguration given by

o0(z)
o0(0)

\ B02(z)
B02(0)

\ exp ([z/H) , (3.10)

where the gas scale height is H 4 (1] a)a2/g and the initial ratio of the magnetic to the gas pressure isa( 4B02/[2o0 a2])
assumed a constant. We have chosen a \ 1.0 in the simulation.

The computation domain covers 0¹ y ¹ 12H and 0 ¹ z¹ 12H. According to the linear stability analysis 12H is the
horizontal wavelength corresponding to the maximum growth rate (Parker 1966). Periodic condition has been used in the
y-boundaries, while reÑecting condition in the z-boundaries. The density scale height H, the isothermal sound speed a, the
initial midplane density and the initial midplane Ðeld strength have been chosen as the units of length, velocity,o0(0), B0(0)
density, and magnetic Ðeld, respectively.

To initiate the instability we have added random velocity perturbations to the equilibrium proÐle of equation (3.10).
Standard deviation of the perturbation velocity is 10~4a for each of the velocity components. To check whether the system
follows, in the initial stage, the prescription of the linear analysis, we plot the logarithmic values of the rms velocity against
time. In Figure 4a the dotted and dashed lines are for the horizontal and vertical components of the velocity, respectively. In
the same Ðgure the solid line represents the linear growth of a rate 0.34, which is the maximum growth rate of the system. At
the very early stage the system undergoes a transient phase of adjustment and then quickly develops the Parker instability at
the rate predicted by the linear analysis. The linear growth gets saturated near t ^ 40.

The whole development of the Parker instability may be divided into three phases : The linear phase lasts up to t ^ 40, from
then on the system undergoes the nonlinear phase until t ^ 57, and Ðnally it reaches the damping oscillatory phase.
Iso-contours and gray maps for density (left) and magnetic Ðeld lines and velocity vectors (right), in Figure 4b, present
snapshots of the system at the end of the linear phase (t \ 40), at the end of the nonlinear phase (t \ 57), and Ðnally at t \ 80
of the damping oscillatory phase.

In the linear phase the perturbations grow predominantly in the upper region. In the nonlinear phase the perturbations
gradually move toward the midplane. Through the linear and nonlinear phases, our simulation renders features that closely
agree with those of Basu et al. (1996). As more matter accumulates, already compressed gas in the valley gets over-compressed.
The increased gas pressure bounces the valley matter back to the upper region, and at the same time the built-up pressure at
the valley gets somewhat eased o†. This in turn brings the matter back to the valley. The system now enters the oscillatory
phase of the Parker instability. As the Ðeld lines are pushed deep down to the valley by the weight of overlying matter, the
curvature of the lines becomes small to the degree that magnetic Ðeld lines undergo reconnection. Owing to the reconnection
the matter drops down o† the reconnected line, thereby the matter is allowed to move across the magnetic Ðeld line. The Ðeld
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FIG. 4.È(a) Time evolution of the rms of the horizontal velocity, and the vertical velocity, in a simulation of the Parker instability under aSv
y
2T1@2, Sv

z
2T1@2,

uniform gravity. The magnetohydrostatic equilibrium state together with random velocity perturbations has been given as an initial condition of the
simulation in the computational domain of 256 ] 256 cells. The solid line represents the predicted maximum linear growth with perturbation wavelength

and The normalization units are the isothermal sound speed and the scale height. (b) Evolution of the Parker instability under a uniformj
y
\ 12, j

z
/2 \ 12.

gravity. At three time epochs t \ 40 (top), t \ 57 (middle), and t \ 80 (bottom), gray maps of density together with equidensity lines are plotted in the left
panels, and the velocity vectors with magnetic Ðeld lines in the right panels. The values of the 10 equidensity lines are the initial exponential densities at z\
1, . . . , 10. Magnetic Ðeld lines are chosen so that the magnetic Ñux between two consecutive lines is constant. At each time epoch, the unit of the velocity
vectors is represented.
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line is now relieved from the burden of supporting the gas against the external gravity and Ñoats upward. On the other hand,
the Ðeld line located just below the reconnected one has to support more weight than before. Consequently this line now gets
reconnected. In this way a redistribution of matter with respect to the Ðeld lines continues to occur until there is no more
reconnection. The system Ðnally settles in an equilibrium. Since the reconnection drives the system to violate the Ñux-freezing
condition, the Ðnal conÐguration of the system is di†erent from that of the Mouschovias (1974) equilibrium.

4. CONCLUSIONS

We have developed one-dimensional and multi-dimensional numerical codes to solve the IMHD equations, which are
isothermal analogues of the previous adiabatic codes (RJ ; RJF). Both the isothermal and adiabatic codes are based on the
same scheme, an explicit Ðnite-di†erence scheme on an Eulerian grid called TVD, which is a second-orderÈaccurate extension
of the Roe-type upwind scheme. The shock tube tests have shown that both codes capture correctly all the structures in
MHDs. From the decay test of a linear wave, we have found that numerical dissipation of the IMHD code is somewhatAlfve� n
smaller than that of the adiabatic MHD code.

The robustness of the adiabatic code has been demonstrated through the simulations of MHD Ñows such as the Kelvin-
Helmholtz instability (Frank et al. 1996 ; Jones et al. 1997) and jets (Frank et al. 1998 ; Jones, Ryu, & Engel 1999), and that of
the isothermal code has been done through the simulation of the Parker instability under the uniform gravity in this paper.
Furthermore, both codes are fast enough to simulate multidimensional, astrophysical MHD Ñows using modest computa-
tional resources. Both codes run at about 400 MFlops on a Cray C90 processor (RJF), and the isothermal code updates zones
about twice as fast as the adiabatic code. Together with the adiabatic code, the isothermal code is a useful tool to study the
nonlinear evolution of astrophysical MHD Ñows.
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