218 research outputs found

    Score Fusion by Maximizing the Area under the ROC Curve

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-02172-5_61Information fusion is currently a very active research topic aimed at improving the performance of biometric systems. This paper proposes a novel method for optimizing the parameters of a score fusion model based on maximizing an index related to the Area Under the ROC Curve. This approach has the convenience that the fusion parameters are learned without having to specify the client and impostor priors or the costs for the different errors. Empirical results on several datasets show the effectiveness of the proposed approach.Work supported by the Spanish projects DPI2006-15542-C04 and TIN2008-04571 and the Generalitat Valenciana - Consellería d’Educació under an FPI scholarship.Villegas Santamaría, M.; Paredes Palacios, R. (2009). Score Fusion by Maximizing the Area under the ROC Curve. En Pattern Recognition and Image Analysis: 4th Iberian Conference, IbPRIA 2009 Póvoa de Varzim, Portugal, June 10-12, 2009 Proceedings. Springer Verlag (Germany). 473-480. https://doi.org/10.1007/978-3-642-02172-5_61S473480Toh, K.A., Kim, J., Lee, S.: Biometric scores fusion based on total error rate minimization. Pattern Recognition 41(3), 1066–1082 (2008)Jain, A., Nandakumar, K., Ross, A.: Score normalization in multimodal biometric systems. Pattern Recognition 38(12), 2270–2285 (2005)Gutschoven, B., Verlinde, P.: Multi-modal identity verification using support vector machines (svm). In: Proceedings of the Third International Conference on Information Fusion. FUSION 2000, vol. 2, pp. THB3/3–THB3/8 (July 2000)Ma, Y., Cukic, B., Singh, H.: A classification approach to multi-biometric score fusion. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 484–493. Springer, Heidelberg (2005)Maurer, D.E., Baker, J.P.: Fusing multimodal biometrics with quality estimates via a bayesian belief network. Pattern Recogn. 41(3), 821–832 (2008)Ling, C.X., Huang, J., Zhang, H.: Auc: a statistically consistent and more discriminating measure than accuracy. In: Proc. of IJCAI 2003, pp. 519–524 (2003)Yan, L., Dodier, R.H., Mozer, M., Wolniewicz, R.H.: Optimizing classifier performance via an approximation to the wilcoxon-mann-whitney statistic. In: Machine Learning, Proceedings of the Twentieth International Conference (ICML 2003), Washington, DC, USA, pp. 848–855. AAAI Press, Menlo Park (2003)Marrocco, C., Molinara, M., Tortorella, F.: Exploiting auc for optimal linear combinations of dichotomizers. Pattern Recogn. Lett. 27(8), 900–907 (2006)Marrocco, C., Duin, R.P.W., Tortorella, F.: Maximizing the area under the roc curve by pairwise feature combination. Pattern Recogn. 41(6), 1961–1974 (2008)Paredes, R., Vidal, E.: Learning prototypes and distances: a prototype reduction technique based on nearest neighbor error minimization. Pattern Recognition 39(2), 180–188 (2006)Villegas, M., Paredes, R.: Simultaneous learning of a discriminative projection and prototypes for nearest-neighbor classification. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2008, pp. 1–8 (2008)Nandakumar, K., Chen, Y., Dass, S.C., Jain, A.: Likelihood ratio-based biometric score fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(2), 342–347 (2008)Poh, N., Bengio, S.: A score-level fusion benchmark database for biometric authentication. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 1059–1070. Springer, Heidelberg (2005)National Institute of Standards and Technology: NIST Biometric Scores Set - Release 1 (BSSR1) (2004), http://www.itl.nist.gov/iad/894.03/biometricscores/Bengio, S., Mariéthoz, J., Keller, M.: The expected performance curve. In: Proceedings of the Second Workshop on ROC Analysis in ML, pp. 9–16 (2005

    Physical activity self-management interventions for adults with spinal cord injury: Part 1–A systematic review of the use and effectiveness of behavior change techniques

    Get PDF
    Objectives: To determine which behavior change techniques (BCTs) have been used within leisure time physical activity (LTPA) self-management interventions for persons with spinal cord injury (SCI), and which BCTs were effective for improving LTPA behavior and/or its antecedents. Design: Systematic review informed by the PRISMA guidelines. Methods: A comprehensive literature search was conducted using five databases. Study characteristics were extracted from included articles and intervention descriptions were coded using the BCT Taxonomy V.1. Effectiveness and maintenance of BCTs as well as the level of behavior change theory use in the design of interventions were examined within experimental studies. Results: Thirty-one unique studies were included, 16 of which had an experimental design. Across all 31 studies, a total of 222 BCTs were identified, representing 32 out of a possible 93 BCTs. The most commonly used BCTs related to the core components of self-management (i.e., education, training/rehearsal of psychological strategies, and social support). Examination of the 16 experimental studies revealed that the use of BCTs corresponding to core self-management components were related to significant improvements and maintenance of LTPA outcomes, regardless of the number of BCTs used. Conclusions: This review offers a glimpse into the mechanisms by which self-management interventions lead to behavior change; however, more research is needed to explore and evaluate other elements (e.g., theory use, tailoring, dose, mode of delivery, and provider) that may comprise effective LTPA self-management interventions for persons with SCI. PROSPERO registration number: CRD42016037531

    Anisotropic Vacuum Induced Interference in Decay Channels

    Get PDF
    We demonstrate how the anisotropy of the vacuum of the electromagnetic field can lead to quantum interferences among the decay channels of close lying states. Our key result is that interferences are given by the {\em scalar} formed from the antinormally ordered electric field correlation tensor for the anisotropic vacuum and the dipole matirx elements for the two transitions. We present results for emission between two conducting plates as well as for a two photon process involving fluorescence produced under coherent cw excitationComment: 6 pages with 2 figures, to appear in Phys. Rev. Lett. (tentative june 2000

    APC/C-Mediated Degradation of dsRNA-Binding Protein 4 (DRB4) Involved in RNA Silencing

    Get PDF
    Background: Selective protein degradation via the ubiquitin-26S proteasome is a major mechanism underlying DNA replication and cell division in all Eukaryotes. In particular, the APC/C (Anaphase Promoting Complex or Cyclosome) is a master ubiquitin protein ligase (E3) that targets regulatory proteins for degradation allowing sister chromatid separation and exit from mitosis. Interestingly, recent work also indicates that the APC/C remains active in differentiated animal and plant cells. However, its role in post-mitotic cells remains elusive and only a few substrates have been characterized. Methodology/Principal Findings: In order to identify novel APC/C substrates, we performed a yeast two-hybrid screen using as the bait Arabidopsis APC10/DOC1, one core subunit of the APC/C, which is required for substrate recruitment. This screen identified DRB4, a double-stranded RNA binding protein involved in the biogenesis of different classes of small RNA (sRNA). This protein interaction was further confirmed in vitro and in plant cells. Moreover, APC10 interacts with DRB4 through the second dsRNA binding motif (dsRBD2) of DRB4, which is also required for its homodimerization and binding to its Dicer partner DCL4. We further showed that DRB4 protein accumulates when the proteasome is inactivated and, most importantly, we found that DRB4 stability depends on APC/C activity. Hence, depletion of Arabidopsis APC/C activity by RNAi leads to a strong accumulation of endogenous DRB4, far beyond its normal level of accumulation. However, we could not detect any defects in sRNA production in lines where DRB4 was overexpressed

    The Arabidopsis thaliana F-Box Protein FBL17 Is Essential for Progression through the Second Mitosis during Pollen Development

    Get PDF
    In fungi and metazoans, the SCF-type Ubiquitin protein ligases (E3s) play a critical role in cell cycle regulation by degrading negative regulators, such as cell cycle-dependent kinase inhibitors (CKIs) at the G1-to-S-phase checkpoint. Here we report that FBL17, an Arabidopsis thaliana F-box protein, is involved in cell cycle regulation during male gametogenesis. FBL17 expression is strongly enhanced in plants co-expressing E2Fa and DPa, transcription factors that promote S-phase entry. FBL17 loss-of-function mutants fail to undergo pollen mitosis II, which generates the two sperm cells in mature A. thaliana pollen. Nonetheless, the single sperm cell-like cell in fbl17 mutants is functional but will exclusively fertilize the egg cell of the female gametophyte, giving rise to an embryo that will later abort, most likely due to the lack of functional endosperm. Seed abortion can, however, be overcome by mutations in FIE, a component of the Polycomb group complex, overall resembling loss-of-function mutations in the A. thaliana cyclin-dependent kinase CDKA;1. Finally we identified ASK11, as an SKP1-like partner protein of FBL17 and discuss a possible mechanism how SCFFBL17 may regulate cell division during male gametogenesis

    Diversification and Specialization of Plant RBR Ubiquitin Ligases

    Get PDF
    Background: RBR ubiquitin ligases are components of the ubiquitin-proteasome system present in all eukaryotes. They are characterized by having the RBR (RING – IBR – RING) supradomain. In this study, the patterns of emergence of RBR genes in plants are described. Methodology/Principal Findings: Phylogenetic and structural data confirm that just four RBR subfamilies (Ariadne, ARA54, Plant I/Helicase and Plant II) exist in viridiplantae. All of them originated before the split that separated green algae from the rest of plants. Multiple genes of two of these subfamilies (Ariadne and Plant II) appeared in early plant evolution. It is deduced that the common ancestor of all plants contained at least five RBR genes and the available data suggest that this number has been increasing slowly along streptophyta evolution, although losses, especially of Helicase RBR genes, have also occurred in several lineages. Some higher plants (e. g. Arabidopsis thaliana, Oryza sativa) contain a very large number of RBR genes and many of them were recently generated by tandem duplications. Microarray data indicate that most of these new genes have low-level and sometimes specific expression patterns. On the contrary, and as occurs in animals, a small set of older genes are broadly expressed at higher levels. Conclusions/Significance: The available data suggests that the dynamics of appearance and conservation of RBR genes is quite different in plants from what has been described in animals. In animals, an abrupt emergence of many structurall

    Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering

    Get PDF
    A rice tiller is a specialized grain-bearing branch that contributes greatly to grain yield. The MONOCULM 1 (MOC1) gene is the first identified key regulator controlling rice tiller number; however, the underlying mechanism remains to be elucidated. Here we report a novel rice gene, Tillering and Dwarf 1 (TAD1), which encodes a co-activator of the anaphase-promoting complex (APC/C), a multi-subunit E3 ligase. Although the elucidation of co-activators and individual subunits of plant APC/C involved in regulating plant development have emerged recently, the understanding of whether and how this large cell-cycle machinery controls plant development is still very limited. Our study demonstrates that TAD1 interacts with MOC1, forms a complex with OsAPC10 and functions as a co-activator of APC/C to target MOC1 for degradation in a cell-cycle-dependent manner. Our findings uncovered a new mechanism underlying shoot branching and shed light on the understanding of how the cell-cycle machinery regulates plant architecture

    AAV-mediated photoreceptor transduction of the pig cone-enriched retina

    Get PDF
    Recent success in clinical trials supports the use of adeno-associated viral (AAV) vectors for gene therapy of retinal diseases caused by defects in the retinal pigment epithelium (RPE). In contrast, evidence of the efficacy of AAV-mediated gene transfer to retinal photoreceptors, the major site of inherited retinal diseases, is less robust. In addition, although AAV-mediated RPE transduction appears efficient, independently of the serotype used and species treated, AAV-mediated photoreceptor gene transfer has not been systematically investigated thus so far in large animal models, which also may allow identifying relevant species-specific differences in AAV-mediated retinal transduction. In the present study, we used the porcine retina, which has a high cone/rod ratio. This feature allows to properly evaluate both cone and rod photoreceptors transduction and compare the transduction characteristics of AAV2/5 and 2/8, the two most efficient AAV vector serotypes for photoreceptor targeting. Here we show that AAV2/5 and 2/8 transduces both RPE and photoreceptors. AAV2/8 infects and transduces photoreceptor more efficiently than AAV2/5, similarly to what we have observed in the murine retina. The use of the photoreceptor-specific rhodopsin promoter restricts transgene expression to porcine rods and cones, and results in photoreceptor transduction levels similar to those obtained with the ubiquitous promoters tested. Finally, immunological, toxicological and biodistribution studies support the safety of AAV subretinal administration to the large porcine retina. The data presented here on AAV-mediated transduction of the cone-enriched porcine retina may affect the development of gene-based therapies for rare and common severe photoreceptor diseases

    Conserved CDC20 Cell Cycle Functions Are Carried out by Two of the Five Isoforms in Arabidopsis thaliana

    Get PDF
    The CDC20 and Cdh1/CCS52 proteins are substrate determinants and activators of the Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligase and as such they control the mitotic cell cycle by targeting the degradation of various cell cycle regulators. In yeasts and animals the main CDC20 function is the destruction of securin and mitotic cyclins. Plants have multiple CDC20 gene copies whose functions have not been explored yet. In Arabidopsis thaliana there are five CDC20 isoforms and here we aimed at defining their contribution to cell cycle regulation, substrate selectivity and plant development.Studying the gene structure and phylogeny of plant CDC20s, the expression of the five AtCDC20 gene copies and their interactions with the APC/C subunit APC10, the CCS52 proteins, components of the mitotic checkpoint complex (MCC) and mitotic cyclin substrates, conserved CDC20 functions could be assigned for AtCDC20.1 and AtCDC20.2. The other three intron-less genes were silent and specific for Arabidopsis. We show that AtCDC20.1 and AtCDC20.2 are components of the MCC and interact with mitotic cyclins with unexpected specificity. AtCDC20.1 and AtCDC20.2 are expressed in meristems, organ primordia and AtCDC20.1 also in pollen grains and developing seeds. Knocking down both genes simultaneously by RNAi resulted in severe delay in plant development and male sterility. In these lines, the meristem size was reduced while the cell size and ploidy levels were unaffected indicating that the lower cell number and likely slowdown of the cell cycle are the cause of reduced plant growth.The intron-containing CDC20 gene copies provide conserved and redundant functions for cell cycle progression in plants and are required for meristem maintenance, plant growth and male gametophyte formation. The Arabidopsis-specific intron-less genes are possibly "retrogenes" and have hitherto undefined functions or are pseudogenes
    • …
    corecore