2,644 research outputs found

    ALMA Observations of Asymmetric Molecular Gas Emission from a Protoplanetary Disk in the Orion Nebula

    Full text link
    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of molecular line emission from d216-0939, one of the largest and most massive protoplanetary disks in the Orion Nebula Cluster (ONC). We model the spectrally resolved HCO+^+ (4--3), CO (3--2), and HCN (4--3) lines observed at 0\farcs5 resolution to fit the temperature and density structure of the disk. We also weakly detect and spectrally resolve the CS (7--6) line but do not model it. The abundances we derive for CO and HCO+^+ are generally consistent with expected values from chemical modeling of protoplanetary disks, while the HCN abundance is higher than expected. We dynamically measure the mass of the central star to be 2.17±0.07M2.17\pm0.07\,M_\odot which is inconsistent with the previously determined spectral type of K5. We also report the detection of a spatially unresolved high-velocity blue-shifted excess emission feature with a measurable positional offset from the central star, consistent with a Keplerian orbit at 60±20au60\pm20\,\mathrm{au}. Using the integrated flux of the feature in HCO+^+ (4--3), we estimate the total H2_2 gas mass of this feature to be at least 1.88MJupiter1.8-8\,M_\mathrm{Jupiter}, depending on the assumed temperature. The feature is due to a local temperature and/or density enhancement consistent with either a hydrodynamic vortex or the expected signature of the envelope of a forming protoplanet within the disk.Comment: 19 pages, 12 figures, accepted for publication in A

    Radial Surface Density Profiles of Gas and Dust in the Debris Disk around 49 Ceti

    Get PDF
    We present ~0.4 resolution images of CO(3-2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broad-band spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between ~100 and 310 au, with a marginally significant enhancement of surface density at a radius of ~110 au. The SED requires an inner disk of small grains in addition to the outer disk of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While ~80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at ~20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (~220 au) is smaller than that of the dust disk (~300 au), consistent with recent observations of other gas-bearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti's disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.Comment: 20 pages, 8 figures, accepted for publication in ApJ March 31, 2017 (submitted Nov 2016

    Infrared Variability of Evolved Protoplanetary Disks: Evidence for Scale Height Variations in the Inner Disk

    Full text link
    We present the results of a multi-wavelength multi-epoch survey of five evolved protoplanetary disks in the IC 348 cluster that show significant infrared variability. Using 3-8micron and 24micron photometry along with 5-40micron spectroscopy from the Spitzer Space Telescope, as well as ground-based 0.8-5micron spectroscopy, optical spectroscopy and near-infrared photometry, covering timescales of days to years, we examine the variability in the disk, stellar and accretion flux. We find substantial variations (10-60%) at all infrared wavelengths on timescales of weeks to months for all of these young stellar objects. This behavior is not unique when compared to other cluster members and is consistent with changes in the structure of the inner disk, most likely scale height fluctuations on a dynamical timescale. Previous observations, along with our near-infrared photometry, indicate that the stellar fluxes are relatively constant; stellar variability does not appear to drive the large changes in the infrared fluxes. Based on our near-infrared spectroscopy of the Pa-beta and Br-gamma lines we find that the accretion rates are variable in most of the evolved disks but the overall rates are probably too small to cause the infrared variability. We discuss other possible physical causes for the variability, including the influence of a companion, magnetic fields threading the disk, and X-ray flares.Comment: Accepted to ApJ. 33 pages, emulate apj forma

    The Outburst of V1647 Ori Revealed by Spitzer

    Full text link
    We present Spitzer Space Telescope observations of V1647 Ori, the outbursting source lighting McNeil's nebula, taken near the optical peak of the outburst in early March 2004. The source is easily detected in all Spitzer imaging bands from 3.6 - 70 microns. The fluxes at all wavelengths are roughly a factor of 15 brighter than pre-outburst levels; we measure a bolometric luminosity of 44 Lsun. We posit that this event is due to an increase in the accretion luminosity of the source. Simple models of an accretion disk plus tenuous envelope can qualitatively explain the observed pre- and post-outburst spectral energy distributions. The accretion activity implied by our results indicates that the outburst may be intermediate between FUor and EXor-type events. We also report the discovery of a previously unknown mid-infrared counterpart to the nearby Herbig-Haro object HH 22.Comment: 12 pages, 3 figures, accepted by ApJ Letter

    Galactic bulge giants: probing stellar and galactic evolution I. Catalogue of Spitzer IRAC and MIPS sources

    Full text link
    Aims: We aim at measuring mass-loss rates and the luminosities of a statistically large sample of Galactic bulge stars at several galactocentric radii. The sensitivity of previous infrared surveys of the bulge has been rather limited, thus fundamental questions for late stellar evolution, such as the stage at which substantial mass-loss begins on the red giant branch and its dependence on fundamental stellar properties, remain unanswered. We aim at providing evidence and answers to these questions. Methods: To this end, we observed seven 15 times 15 arcmin^2 fields in the nuclear bulge and its vicinity with unprecedented sensitivity using the IRAC and MIPS imaging instruments on-board the Spitzer Space Telescope. In each of the fields, tens of thousands of point sources were detected. Results: In the first paper based on this data set, we present the observations, data reduction, the final catalogue of sources, and a detailed comparison to previous mid-IR surveys of the Galactic bulge, as well as to theoretical isochrones. We find in general good agreement with other surveys and the isochrones, supporting the high quality of our catalogue.Comment: 21 pages, accepted for publication in A&A. A version with high-resolution figures, as well as the data catalogues (including cross-id with GLIMPSE and GALCEN) and image mosaics are available at the anonymous ftp://ftp.ster.kuleuven.be/dist/stefan/Spitzer

    Young Stellar Object Variability (YSOVAR): Long Timescale Variations in the Mid-Infrared

    Full text link
    The YSOVAR (Young Stellar Object VARiability) Spitzer Space Telescope observing program obtained the first extensive mid-infrared (3.6 & 4.5 um) time-series photometry of the Orion Nebula Cluster plus smaller footprints in eleven other star-forming cores (AFGL490, NGC1333, MonR2, GGD 12-15, NGC2264, L1688, Serpens Main, Serpens South, IRAS 20050+2720, IC1396A, and Ceph C). There are ~29,000 unique objects with light curves in either or both IRAC channels in the YSOVAR data set. We present the data collection and reduction for the Spitzer and ancillary data, and define the "standard sample" on which we calculate statistics, consisting of fast cadence data, with epochs about twice per day for ~40d. We also define a "standard sample of members", consisting of all the IR-selected members and X-ray selected members. We characterize the standard sample in terms of other properties, such as spectral energy distribution shape. We use three mechanisms to identify variables in the fast cadence data--the Stetson index, a chi^2 fit to a flat light curve, and significant periodicity. We also identified variables on the longest timescales possible of ~6 years, by comparing measurements taken early in the Spitzer mission with the mean from our YSOVAR campaign. The fraction of members in each cluster that are variable on these longest timescales is a function of the ratio of Class I/total members in each cluster, such that clusters with a higher fraction of Class I objects also have a higher fraction of long-term variables. For objects with a YSOVAR-determined period and a [3.6]-[8] color, we find that a star with a longer period is more likely than those with shorter periods to have an IR excess. We do not find any evidence for variability that causes [3.6]-[4.5] excesses to appear or vanish within our data; out of members and field objects combined, at most 0.02% may have transient IR excesses.Comment: Accepted to AJ; 38 figures, 93 page

    From a certain point of view: sensory phenomenological envisionings of running space and place

    Get PDF
    The precise ways in which we go about the mundane, repetitive, social actions of everyday life are central concerns of ethnographers and theorists working within the traditions of the sociology of the mundane and sociological phenomenology. In this article, we utilize insights derived from sociological phenomenology and the newly developing field of sensory sociology to investigate a particular, mundane, and embodied social practice, that of training for distance running in specific places: our favored running routes. For, despite a growing body of ethnographic studies of particular sports, little analytic attention has been devoted to the actual, concrete practices of “doing” or “producing” sporting activity, particularly from a sensory ethnographic perspective. Drawing upon data from a 2-year joint autoethnographic research project, here we explore the visual dimension, focusing upon three key themes in relation to our runners’ visualization of, respectively, (1) hazardous places, (2) performance places, (3) the time–space–place nexus
    corecore