1,442 research outputs found
Direct comparison of high voltage breakdown measurements in liquid argon and liquid xenon
As noble liquid time projection chambers grow in size their high voltage requirements increase, and detailed, reproducible studies of dielectric breakdown and the onset of electroluminescence are needed to inform their design. The Xenon Breakdown Apparatus (XeBrA) is a 5-liter cryogenic chamber built to characterize the DC high voltage breakdown behavior of liquid xenon and liquid argon. Electrodes with areas up to 33 cm2 were tested while varying the cathode-anode separation from 1 to 6 mm with a voltage difference up to 75 kV. A power-law relationship between breakdown field and electrode area was observed. The breakdown behavior of liquid argon and liquid xenon within the same experimental apparatus was comparable
Octopamine Neuromodulation Regulates Gr32a-Linked Aggression and Courtship Pathways in Drosophila Males
Chemosensory pheromonal information regulates aggression and reproduction in many species, but how pheromonal signals are transduced to reliably produce behavior is not well understood. Here we demonstrate that the pheromonal signals detected by Gr32a-expressing chemosensory neurons to enhance male aggression are filtered through octopamine (OA, invertebrate equivalent of norepinephrine) neurons. Using behavioral assays, we find males lacking both octopamine and Gr32a gustatory receptors exhibit parallel delays in the onset of aggression and reductions in aggression. Physiological and anatomical experiments identify Gr32a to octopamine neuron synaptic and functional connections in the suboesophageal ganglion. Refining the Gr32a-expressing population indicates that mouth Gr32a neurons promote male aggression and form synaptic contacts with OA neurons. By restricting the monoamine neuron target population, we show that three previously identified OA-FruM neurons involved in behavioral choice are among the Gr32a-OA connections. Our findings demonstrate that octopaminergic neuromodulatory neurons function as early as a second-order step in this chemosensory-driven male social behavior pathway
Octopamine Neuromodulation Regulates Gr32a-Linked Aggression and Courtship Pathways in \u3ci\u3eDrosophila\u3c/i\u3e Males
Chemosensory pheromonal information regulates aggression and reproduction in many species, but how pheromonal signals are transduced to reliably produce behavior is not well understood. Here we demonstrate that the pheromonal signals detected by Gr32a-expressing chemosensory neurons to enhance male aggression are filtered through octopamine (OA, invertebrate equivalent of norepinephrine) neurons. Using behavioral assays, we find males lacking both octopamine and Gr32a gustatory receptors exhibit parallel delays in the onset of aggression and reductions in aggression. Physiological and anatomical experiments identify Gr32a to octopamine neuron synaptic and functional connections in the suboesophageal ganglion. Refining the Gr32a-expressing population indicates that mouth Gr32a neurons promote male aggression and form synaptic contacts with OA neurons. By restricting the monoamine neuron target population, we show that three previously identified OA-FruM neurons involved in behavioral choice are among the Gr32a-OA connections. Our findings demonstrate that octopaminergic neuromodulatory neurons function as early as a second-order step in this chemosensory-driven male social behavior pathway
The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6
The recent IPCC reports state that continued anthropogenic greenhouse gas emissions are changing the climate, threatening "severe, pervasive and irreversible" impacts. Slow progress in emissions reduction to mitigate climate change is resulting in increased attention to what is called geoengineering, climate engineering, or climate intervention – deliberate interventions to counter climate change that seek to either modify the Earth's radiation budget or remove greenhouse gases such as CO2 from the atmosphere. When focused on CO2, the latter of these categories is called carbon dioxide removal (CDR). Future emission scenarios that stay well below 2 °C, and all emission scenarios that do not exceed 1.5 °C warming by the year 2100, require some form of CDR. At present, there is little consensus on the climate impacts and atmospheric CO2 reduction efficacy of the different types of proposed CDR. To address this need, the Carbon Dioxide Removal Model Intercomparison Project (or CDRMIP) was initiated. This project brings together models of the Earth system in a common framework to explore the potential, impacts, and challenges of CDR. Here, we describe the first set of CDRMIP experiments, which are formally part of the 6th Coupled Model Intercomparison Project (CMIP6). These experiments are designed to address questions concerning CDR-induced climate "reversibility", the response of the Earth system to direct atmospheric CO2 removal (direct air capture and storage), and the CDR potential and impacts of afforestation and reforestation, as well as ocean alkalinization.
Observation of activity prior to dielectric breakdown in liquid xenon with the XeBrA experiment
Maintaining the electric fields necessary for the current generation of noble
liquid time projection chambers (TPCs), with drift lengths exceeding one meter,
requires a large negative voltage applied to their cathode. Delivering such
high voltage is associated with an elevated risk of electrostatic discharge and
electroluminescence, which would be detrimental to the performance of the TPC.
The Xenon Breakdown Apparatus (XeBrA) is a five-liter high-voltage test chamber
built to investigate the factors contributing to high voltage breakdown in
noble liquids. Area scaling and surface finish were observed to be the dominant
factors affecting breakdown. In addition, small electrical activity was
frequently observed during high voltage ramps prior to electrostatic discharge.
The position of breakdowns was reconstructed with a system of high-speed
cameras and good agreement with electric field simulations was found. Based on
the results presented in this work, we recommend that the next generation of
TPCs should not withstand fields larger than 20 kV/cm on the electrode
surfaces.Comment: 29 pages, 13 figures; typo in the author list correcte
Health in times of uncertainty in the eastern Mediterranean region, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013
Background: The eastern Mediterranean region is comprised of 22 countries: Afghanistan, Bahrain, Djibouti, Egypt, Iran, Iraq, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Pakistan, Palestine, Qatar, Saudi Arabia, Somalia, Sudan, Syria, Tunisia, the United Arab Emirates, and Yemen. Since our Global Burden of Disease Study 2010 (GBD 2010), the region has faced unrest as a result of revolutions, wars, and the so-called Arab uprisings. The objective of this study was to present the burden of diseases, injuries, and risk factors in the eastern Mediterranean region as of 2013. Methods: GBD 2013 includes an annual assessment covering 188 countries from 1990 to 2013. The study covers 306 diseases and injuries, 1233 sequelae, and 79 risk factors. Our GBD 2013 analyses included the addition of new data through updated systematic reviews and through the contribution of unpublished data sources from collaborators, an updated version of modelling software, and several improvements in our methods. In this systematic analysis, we use data from GBD 2013 to analyse the burden of disease and injuries in the eastern Mediterranean region specifically. Findings: The leading cause of death in the region in 2013 was ischaemic heart disease (90·3 deaths per 100 000 people), which increased by 17·2% since 1990. However, diarrhoeal diseases were the leading cause of death in Somalia (186·7 deaths per 100 000 people) in 2013, which decreased by 26·9% since 1990. The leading cause of disability-adjusted life-years (DALYs) was ischaemic heart disease for males and lower respiratory infection for females. High blood pressure was the leading risk factor for DALYs in 2013, with an increase of 83·3% since 1990. Risk factors for DALYs varied by country. In low-income countries, childhood wasting was the leading cause of DALYs in Afghanistan, Somalia, and Yemen, whereas unsafe sex was the leading cause in Djibouti. Non-communicable risk factors were the leading cause of DALYs in high-income and middle-income countries in the region. DALY risk factors varied by age, with child and maternal malnutrition affecting the younger age groups (aged 28 days to 4 years), whereas high bodyweight and systolic blood pressure affected older people (aged 60–80 years). The proportion of DALYs attributed to high body-mass index increased from 3·7% to 7·5% between 1990 and 2013. Burden of mental health problems and drug use increased. Most increases in DALYs, especially from non-communicable diseases, were due to population growth. The crises in Egypt, Yemen, Libya, and Syria have resulted in a reduction in life expectancy; life expectancy in Syria would have been 5 years higher than that recorded for females and 6 years higher for males had the crisis not occurred. Interpretation: Our study shows that the eastern Mediterranean region is going through a crucial health phase. The Arab uprisings and the wars that followed, coupled with ageing and population growth, will have a major impact on the region's health and resources. The region has historically seen improvements in life expectancy and other health indicators, even under stress. However, the current situation will cause deteriorating health conditions for many countries and for many years and will have an impact on the region and the rest of the world. Based on our findings, we call for increased investment in health in the region in addition to reducing the conflicts.Ali H Mokdad ... Azmeraw T Amare ... et al
Psychometric precision in phenotype definition is a useful step in molecular genetic investigation of psychiatric disorders
Affective disorders are highly heritable, but few genetic risk variants have been consistently replicated in molecular genetic association studies. The common method of defining psychiatric phenotypes in molecular genetic research is either a summation of symptom scores or binary threshold score representing the risk of diagnosis. Psychometric latent variable methods can improve the precision of psychiatric phenotypes, especially when the data structure is not straightforward. Using data from the British 1946 birth cohort, we compared summary scores with psychometric modeling based on the General Health Questionnaire (GHQ-28) scale for affective symptoms in an association analysis of 27 candidate genes (249 single-nucleotide polymorphisms (SNPs)). The psychometric method utilized a bi-factor model that partitioned the phenotype variances into five orthogonal latent variable factors, in accordance with the multidimensional data structure of the GHQ-28 involving somatic, social, anxiety and depression domains. Results showed that, compared with the summation approach, the affective symptoms defined by the bi-factor psychometric model had a higher number of associated SNPs of larger effect sizes. These results suggest that psychometrically defined mental health phenotypes can reflect the dimensions of complex phenotypes better than summation scores, and therefore offer a useful approach in genetic association investigations
Physician career satisfaction within specialties
<p>Abstract</p> <p>Background</p> <p>Specialty-specific data on career satisfaction may be useful for understanding physician workforce trends and for counseling medical students about career options.</p> <p>Methods</p> <p>We analyzed cross-sectional data from 6,590 physicians (response rate, 53%) in Round 4 (2004-2005) of the Community Tracking Study Physician Survey. The dependent variable ranged from +1 to -1 and measured satisfaction and dissatisfaction with career. Forty-two specialties were analyzed with survey-adjusted linear regressions</p> <p>Results</p> <p>After adjusting for physician, practice, and community characteristics, the following specialties had significantly higher satisfaction levels than family medicine: pediatric emergency medicine (regression coefficient = 0.349); geriatric medicine (0.323); other pediatric subspecialties (0.270); neonatal/prenatal medicine (0.266); internal medicine and pediatrics (combined practice) (0.250); pediatrics (0.250); dermatology (0.249);and child and adolescent psychiatry (0.203). The following specialties had significantly lower satisfaction levels than family medicine: neurological surgery (-0.707); pulmonary critical care medicine (-0.273); nephrology (-0.206); and obstetrics and gynecology (-0.188). We also found satisfaction was significantly and positively related to income and employment in a medical school but negatively associated with more than 50 work-hours per-week, being a full-owner of the practice, greater reliance on managed care revenue, and uncontrollable lifestyle. We observed no statistically significant gender differences and no differences between African-Americans and whites.</p> <p>Conclusion</p> <p>Career satisfaction varied across specialties. A number of stakeholders will likely be interested in these findings including physicians in specialties that rank high and low and students contemplating specialty. Our findings regarding "less satisfied" specialties should elicit concern from residency directors and policy makers since they appear to be in critical areas of medicine.</p
Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP)
Solar geoengineering - deliberate reduction in the amount of solar radiation retained by the Earth - has been proposed as a means of counteracting some of the climatic effects of anthropogenic greenhouse gas emissions. We present results from Experiment G1 of the Geoengineering Model Intercomparison Project, in which 12 climate models have simulated the climate response to an abrupt quadrupling of CO2 from preindustrial concentrations brought into radiative balance via a globally uniform reduction in insolation. Models show this reduction largely offsets global mean surface temperature increases due to quadrupled CO2 concentrations and prevents 97% of the Arctic sea ice loss that would otherwise occur under high CO2 levels but, compared to the preindustrial climate, leaves the tropics cooler (-0.3 K) and the poles warmer (+0.8 K). Annual mean precipitation minus evaporation anomalies for G1 are less than 0.2 mm day-1 in magnitude over 92% of the globe, but some tropical regions receive less precipitation, in part due to increased moist static stability and suppression of convection. Global average net primary productivity increases by 120% in G1 over simulated preindustrial levels, primarily from CO2 fertilization, but also in part due to reduced plant heat stress compared to a high CO2 world with no geoengineering. All models show that uniform solar geoengineering in G1 cannot simultaneously return regional and global temperature and hydrologic cycle intensity to preindustrial levels. Key Points Temperature reduction from uniform geoengineering is not uniform Geoengineering cannot offset both temperature and hydrology changes NPP increases mostly due to CO2 fertilization ©2013. American Geophysical Union. All Rights Reserved.BK is
supported by the Fund for Innovative Climate and Energy Research.
Simulations performed by BK were supported by the NASA High-End
Computing (HEC) Program through the NASA Center for Climate
Simulation (NCCS) at Goddard Space Flight Center. The Pacific Northwest
National Laboratory is operated for the U.S. Department of Energy by
Battelle Memorial Institute under contract DE-AC05-76RL01830. AR is
supported by US National Science Foundation grant AGS-1157525. JMH
and AJ were supported by the joint DECC/Defra Met Office Hadley Centre
Climate Programme (GA01101). KA, DBK, JEK, UN, HS, and MS received
funding from the European Union’s Seventh Framework Programme (FP7/
2007–2013) under grant agreement 226567-IMPLICC. KA and JEK received
support from the Norwegian Research Council’s Programme for
Supercomputing (NOTUR) through a grant of computing time. Simulations
with the IPSL-CM5 model were supported through HPC resources of [CCT/
TGCC/CINES/IDRIS] under the allocation 2012-t2012012201 made by
GENCI (Grand Equipement National de Calcul Intensif). DJ and JCM thank
all members of the BNU-ESM model group, as well as the Center of
Information and Network Technology at Beijing Normal University for assistance
in publishing the GeoMIP data set. The National Center for Atmospheric
Research is funded by the National Science Foundation. SW was supported by
the Innovative Program of Climate Change Projection for the 21st century,
MEXT, Japan. Computer resources for PJR, BS, and JHY were provided by
the National Energy Research Scientific Computing Center, which is
supported by the Office of Science of the U.S. Department of Energy under
contract DE-AC02-05CH11231
- …