783 research outputs found
High temperature /800 to 1600 F/ magnetic materials
Tests of magnetic materials from 800 to 1600
Halide binding by the purified halorhodopsin chromoprotein. II. New chloride-binding sites revealed by 35Cl NMR
Halorhodopsin is a light-driven chloride pump in the cell membrane of Halobacterium halobium. Recently, a polypeptide of apparent Mr = 20,000 has been purified that contains the halorhodopsin chromophore. Here we use 35Cl NMR to show that the purified chromoprotein possesses two previously unknown classes of chloride-binding sites. One class exhibits a low affinity (KD much greater than 1 M) for chloride and bromide. The second class exhibits a higher affinity (KD = 110 ± 50 mM) for chloride and also binds other anions according to the affinity series I-, SCN- greater than Br-, NO-3 greater than Cl- greater than F- , citrate. Both classes of NMR site remain intact at pH 11, indicating that the essential positive charges are provided by arginine. Also, both classes are unaffected by bleaching, suggesting that the sites are not in the immediate vicinity of the halorhodopsin chromophore. Although the chromoprotein also appears to contain the chloride- transport site (Steiner, M., Oesterhelt, D., Ariki, M., and Lanyi, J. K. (1984) J. Biol. Chem. 259, 2179-2184), this site was not detected by 35Cl NMR, suggesting that the transport site is in the interior of the protein where it is sampled slowly by chloride in the medium. It is proposed that the purified chromoprotein possesses a channel leading from the medium to the transport site and that the channel contains the high affinity NMR site which facilitates the migration of chloride between the medium and the transport site.
We have also used 35Cl NMR to study chloride binding to purified monomeric bacteriorhodopsin; however, this protein contains no detectable chloride-binding sites
Calculated corrections to superallowed Fermi beta decay: New evaluation of the nuclear-structure-dependent terms
The measured -values for superallowed nuclear
-decay can be used to obtain the value of the vector coupling constant
and thus to test the unitarity of the Cabibbo-Kobayashi-Maskawa matrix. An
essential requirement for this test is accurate calculations for the radiative
and isospin symmetry-breaking corrections that must be applied to the
experimental data. We present a new and consistent set of calculations for the
nuclear-structure-dependent components of these corrections. These new results
do not alter the current status of the unitarity test -- it still fails by more
than two standard deviations -- but they provide calculated corrections for
eleven new superallowed transitions that are likely to become accessible to
precise measurements in the future. The reliability of all calculated
corrections is explored and an experimental method indicated by which the
structure-dependent corrections can be tested and, if necessary, improved.Comment: Revtex4, one figur
VLA Survey of Dense Gas in Extended Green Objects: Prevalence of 25 GHz Methanol Masers
We present resolution Very Large Array (VLA) observations of four
CHOH - 25~GHz transitions (=3, 5, 8, 10) along with 1.3~cm
continuum toward 20 regions of active massive star formation containing
Extended Green Objects (EGOs), 14 of which we have previously studied with the
VLA in the Class~I 44~GHz and Class~II 6.7~GHz maser lines (Cyganowski et al.
2009). Sixteen regions are detected in at least one 25~GHz line (=5), with
13 of 16 exhibiting maser emission. In total, we report 34 new sites of
CHOH maser emission and ten new sites of thermal CHOH emission,
significantly increasing the number of 25~GHz Class I CHOH masers observed
at high angular resolution. We identify probable or likely maser counterparts
at 44~GHz for all 15 of the 25~GHz masers for which we have complementary data,
providing further evidence that these masers trace similar physical conditions
despite uncorrelated flux densities. The sites of thermal and maser emission of
CHOH are both predominantly associated with the 4.5 m emission from
the EGO, and the presence of thermal CHOH emission is accompanied by 1.3~cm
continuum emission in 9 out of 10 cases. Of the 19 regions that exhibit 1.3~cm
continuum emission, it is associated with the EGO in 16 cases (out of a total
of 20 sites), 13 of which are new detections at 1.3~cm. Twelve of the 1.3~cm
continuum sources are associated with 6.7~GHz maser emission and likely trace
deeply-embedded massive protostars
Delta Excitations in Neutrino-Nucleus Scattering
We derive the contribution of -h excitations to quasielastic
charged-current neutrino-nucleus scattering in the framework of relativistic
mean-field theory. We discuss the effect of production on the
determination of the axial mass in neutrino scattering experiments.Comment: 14 pages, revtex, 3 postscript figures (available upon request
Large-basis shell-model calculation of 10C->10B Fermi matrix element
We use a shell-model calculation with a two-body effective
interaction derived microscopically from the Reid93 potential to calculate the
isospin-mixing correction for the 10C->10B superallowed Fermi transition. The
effective interaction takes into account the Coulomb potential as well as the
charge dependence of T=1 partial waves. Our results suggest the isospin- mixing
correction , which is compatible with previous
calculations. The correction obtained in those calculations, performed in a
space, was dominated by deviation from unity of the radial
overlap between the converted proton and the corresponding neutron. In the
present calculation this effect is accommodated by the large model space. The
obtained correction is about a factor of four too small to obtain
unitarity of the Cabibbo-Kobayashi-Maskawa matrix with the present experimental
data.Comment: 14 pages. REVTEX. 3 PostScript figure
Shell model calculation of the beta- and beta+ partial halflifes of 54Mn and other unique second forbidden beta decays
The nucleus 54Mn has been observed in cosmic rays. In astrophysical
environments it is fully stripped of its atomic electrons and its decay is
dominated by the beta- branch to the 54Fe ground state. Application of 54Mn
based chronometer to study the confinement of the iron group cosmic rays
requires knowledge of the corresponding halflife, but its measurement is
impossible at the present time. However, the branching ratio for the related
beta+ decay of 54Mn was determined recently. We use the shell model with only a
minimal truncation and calculate both beta+ and beta- decay rates of 54Mn. Good
agreement for the beta+ branch suggests that the calculated partial halflife of
the beta- decay, (4.94 \pm 0.06) x 10^5 years, should be reliable. However,
this halflife is noticeably shorter than the range 1-2 x 10^6 y indicated by
the fit based on the 54Mn abundance in cosmic rays. We also evaluate other
known unique second forbidden beta decays from the nuclear p and sd shells
(10Be, 22Na, and two decay branches of 26Al) and show that the shell model can
describe them with reasonable accuracy as well.Comment: 4 pages, RevTeX, 2 figure
Nuclear Structure Calculations and Modern Nucleon-Nucleon Potentials
We study ground-state properties of the doubly magic nuclei 4He, 16O, and
40Ca employing the Goldstone expansion and using as input four different
high-quality nucleon-nucleon (NN) potentials. The short-range repulsion of
these potentials is renormalized by constructing a smooth low-momentum
potential V-low-k. This is used directly in a Hartree-Fock approach and
corrections up to third order in the Goldstone expansion are evaluated.
Comparison of the results shows that they are only slightly dependent on the
choice of the NN potential.Comment: 5 pages, submitted to Physical Review
Radiative corrections to low energy neutrino reactions
We show that the radiative corrections to charged current (CC) nuclear
reactions with an electron(positron) in the final state are described by a
universal function. The consistency of our treatment of the radiative
corrections with the procedure used to extract the value of the axial coupling
constant is discussed. To illustrate we apply our results to
(anti)neutrino deuterium disintegration and to fusion in the sun. The
limit of vanishing electron mass is considered, and a simple formula valid for
E_{obs}\gsim 1 MeV is obtained. The size of the nuclear structure-dependent
effects is also discussed. Finally, we consider CC transitions with an
electron(positron) in the initial state and discuss some applications to
electron capture reactions.Comment: 23 pages, 5 figure
Beta-decay properties of Si and P
The -decay properties of the neutron-deficient nuclei Si and
P have been investigated at the GANIL/LISE3 facility by means of
charged-particle and -ray spectroscopy. The decay schemes obtained and
the Gamow-Teller strength distributions are compared to shell-model
calculations based on the USD interaction. B(GT) values derived from the
absolute measurement of the -decay branching ratios give rise to a
quenching factor of the Gamow-Teller strength of 0.6. A precise half-life of
43.7 (6) ms was determined for P, the - (2)p decay mode of which
is described
- …