49 research outputs found

    The biology of ageing and the omics revolution

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this recor

    Micro(RNA)-managing muscle wasting (vol 127, pg 619, 2019)

    Get PDF
    In the first sentence of ACKNOWLEDGMENTS, the incorrect author was credited with producing Fig. 1. The correct sentence should read: "A. Soriano-Arroquia produced the figure using Affinity Designer version 1.6.4 (http://affinity.serif.com/en-gb/designer/).

    Major histocompatibility complex I‐induced endoplasmic reticulum stress mediates the secretion of pro‐inflammatory muscle‐derived cytokines

    Get PDF
    Major histocompatibility complex (MHC) I is an important component of intracellular antigen presentation. However, improper expression of MHC I upon the cell surface has been associated with several autoimmune diseases. Myositis is a rare acquired autoimmune disease which targets skeletal muscle, and MHC I overexpression on the surface of muscle fibres and immune cell infiltration are clinical hallmarks. MHC I overexpression may have an important pathogenic role, mediated by the activation of the endoplasmic reticulum (ER) stress response. Given the evidence that muscle is a diverse source of cytokines, we aimed to investigate whether MHC I overexpression can modify the profile of muscle-derived cytokines and what role the ER stress pathway may play. Using C2C12 myoblasts we overexpressed MHC I with a H-2kb vector in the presence or absence of salubrinal an ER stress pathway modifying compound. MHC I overexpression induced ER stress pathway activation and elevated cytokine gene expression. MHC I overexpression caused significant release of cytokines and chemokines, which was attenuated in the presence of salubrinal. Conditioned media from MHC I overexpressing cells induced in vitro T-cell chemotaxis, atrophy of healthy myotubes and modified mitochondrial function, features which were attenuated in the presence of salubrinal. Collectively, these data suggest that MHC I overexpression can induce pro-inflammatory cytokine/chemokine release from C2C12 myoblasts, a process which appears to be mediated in-part by the ER stress pathway

    Major histocompatibility complex I‐induced endoplasmic reticulum stress mediates the secretion of pro‐inflammatory muscle‐derived cytokines

    Get PDF
    Major histocompatibility complex (MHC) I is an important component of intracellular antigen presentation. However, improper expression of MHC I upon the cell surface has been associated with several autoimmune diseases. Myositis is a rare acquired autoimmune disease which targets skeletal muscle, and MHC I overexpression on the surface of muscle fibres and immune cell infiltration are clinical hallmarks. MHC I overexpression may have an important pathogenic role, mediated by the activation of the endoplasmic reticulum (ER) stress response. Given the evidence that muscle is a diverse source of cytokines, we aimed to investigate whether MHC I overexpression can modify the profile of muscle-derived cytokines and what role the ER stress pathway may play. Using C2C12 myoblasts we overexpressed MHC I with a H-2kb vector in the presence or absence of salubrinal an ER stress pathway modifying compound. MHC I overexpression induced ER stress pathway activation and elevated cytokine gene expression. MHC I overexpression caused significant release of cytokines and chemokines, which was attenuated in the presence of salubrinal. Conditioned media from MHC I overexpressing cells induced in vitro T-cell chemotaxis, atrophy of healthy myotubes and modified mitochondrial function, features which were attenuated in the presence of salubrinal. Collectively, these data suggest that MHC I overexpression can induce pro-inflammatory cytokine/chemokine release from C2C12 myoblasts, a process which appears to be mediated in-part by the ER stress pathway

    MicroRNAs in obesity, sarcopenia, and commonalities for sarcopenic obesity : a systematic review

    Get PDF
    Sarcopenic obesity is a distinct condition of sarcopenia in the context of obesity, with the cumulative health risks of both phenotypes. Differential expression of microRNAs (miRNAs) has been reported separately in people with obesity and sarcopenia and may play a role in the pathogenesis of sarcopenic obesity. However, this has not been explored to date. This study aimed to identify differentially expressed miRNAs reported in serum, plasma, and skeletal muscle of people with obesity and sarcopenia and whether there are any commonalities between these conditions. We performed a systematic review on Embase and MEDLINE (PROSPERO, CRD42020224486) for differentially expressed miRNAs (fold change >1.5 or P-value <0.05) in (i) sarcopenia or frailty and (ii) obesity or metabolic syndrome. The functions and targets of miRNAs commonly changed in both conditions, in the same direction, were searched using PubMed. Following deduplication, 247 obesity and 42 sarcopenia studies were identified for full-text screening. Screening identified 36 obesity and 6 sarcopenia studies for final inclusion. A total of 351 miRNAs were identified in obesity and 157 in sarcopenia. Fifty-five miRNAs were identified in both obesity and sarcopenia—by sample type, 48 were found in plasma and one each in serum and skeletal muscle. Twenty-four miRNAs were identified from 10 of the included studies as commonly changed in the same direction (22 in plasma and one each in serum and skeletal muscle) in obesity and sarcopenia. The majority of miRNA-validated targets identified in the literature search were members of the phosphoinositide 3-kinase/protein kinase B and transforming growth factor-ÎČ signalling pathways. The most common targets identified were insulin-like growth factor 1 (miR-424-5p, miR-483-3p, and miR-18b-5p) and members of the SMAD family (miR-483-3p, miR-92a-3p, and miR-424-5p). The majority of commonly changed miRNAs were involved in protein homeostasis, mitochondrial dynamics, determination of muscle fibre type, insulin resistance, and adipogenesis. Twenty-four miRNAs were identified as commonly dysregulated in obesity and sarcopenia with functions and targets implicated in the pathogenesis of sarcopenic obesity. Given the adverse health outcomes associated with sarcopenic obesity, understanding the pathogenesis underlying this phenotype has the potential to lead to effective screening, monitoring, or treatment strategies. Further research is now required to confirm whether these miRNAs are differentially expressed in older adults with sarcopenic obesity

    Decoding the Regulatory Landscape of Ageing in Musculoskeletal Engineered Tissues Using Genome-Wide DNA Methylation and RNASeq

    Get PDF
    Mesenchymal stem cells (MSC) are capable of multipotent differentiation into connective tissues and as such are an attractive source for autologous cell-based regenerative medicine and tissue engineering. Epigenetic mechanisms, like DNA methylation, contribute to the changes in gene expression in ageing. However there was a lack of sufficient knowledge of the role that differential methylation plays during chondrogenic, osteogenic and tenogenic differentiation from ageing MSCs. This study undertook genome level determination of the effects of DNA methylation on expression in engineered tissues from chronologically aged MSCs. We compiled unique DNA methylation signatures from chondrogenic, osteogenic, and tenogenic engineered tissues derived from young; n = 4 (21.8 years ± 2.4 SD) and old; n = 4 (65.5 years±8.3SD) human MSCs donors using the Illumina HumanMethylation 450 Beadchip arrays and compared these to gene expression by RNA sequencing. Unique and common signatures of global DNA methylation were identified. There were 201, 67 and 32 chondrogenic, osteogenic and tenogenic age-related DE protein-coding genes respectively. Findings inferred the nature of the transcript networks was predominantly for ‘cell death and survival’, ‘cell morphology’, and ‘cell growth and proliferation’. Further studies are required to validate if this gene expression effect translates to cell events. Alternative splicing (AS) was dysregulated in ageing with 119, 21 and 9 differential splicing events identified in chondrogenic, osteogenic and tenogenic respectively, and enrichment in genes associated principally with metabolic processes. Gene ontology analysis of differentially methylated loci indicated age-related enrichment for all engineered tissue types in ‘skeletal system morphogenesis’, ‘regulation of cell proliferation’ and ‘regulation of transcription’ suggesting that dynamic epigenetic modifications may occur in genes associated with shared and distinct pathways dependent upon engineered tissue type. An altered phenotype in engineered tissues was observed with ageing at numerous levels. These changes represent novel insights into the ageing process, with implications for stem cell therapies in older patients. In addition we have identified a number of tissue-dependant pathways, which warrant further studies

    AGE-RELATED CHANGES IN MESENCHYMAL STEM CELLS IDENTIFIED USING A MULTI-OMICS APPROACH

    Get PDF
    Mesenchymal stem cells (MSC) are capable of multipotent differentiation into connective tissues and as such are an attractive source for autologous cell-based treatments for many clinical diseases and injuries. Ageing is associated with various altered cellular phenotypes coupled with a variety of transcriptional, epigenetic and translational changes. Furthermore, the regeneration potential of MSCs is reduced with increasing age and is correlated with changes in cellular functions. This study used a systems biology approach to investigate the transcriptomic (RNASeq), epigenetic (miRNASeq and DNA methylation) and protein alterations in ageing MSCs in order to understand the age-related functional and biological variations, which may affect their applications to regenerative medicine.We identified no change in expression of the cellular senescence markers. Alterations were evident at both the transcriptional and post-transcriptional level in a number of transcription factors. There was enrichment in genes involved in developmental disorders at mRNA and differential methylated loci (DML) level. Alterations in energy metabolism were apparent at the DML and protein level. The microRNA miR-199b-5p, whose expression was reduced in old MSCs, had predicted gene targets involved in energy metabolism and cell survival. Additionally, enrichment of DML and proteins in cell survival was evident. Enrichment in metabolic processes was revealed at the protein level and in genes identified as undergoing alternate splicing. Overall, an altered phenotype in MSC ageing at a number of levels implicated roles for inflamm-ageing and mitochondrial ageing. Identified changes represent novel insights into the ageing process, with implications for stem cell therapies in older patients

    MicroRNA regulation of the paired-box transcription factor Pax3 confers robustness to developmental timing of myogenesis

    Get PDF
    Commitment of progenitors in the dermomyotome to myoblast fate is the first step in establishing the body musculature. Pax3 is a crucial transcription factor, important for skeletal muscle development and expressed in myogenic progenitors in the dermomyotome of developing somites and in migratory muscle progenitors that populate the limb buds. Down-regulation of Pax3 is essential to ignite the myogenic program, including up-regulation of myogenic regulators, Myf-5 and MyoD. MicroRNAs (miRNAs) confer robustness to developmental timing by posttranscriptional repression of genetic programs that are related to previous developmental stages or to alternative cell fates. Here we demonstrate that the muscle-specific miRNAs miR-1 and miR-206 directly target Pax3. Antagomir-mediated inhibition of miR-1/miR-206 led to delayed myogenic differentiation in developing somites, as shown by transient loss of myogenin expression. This correlated with increased Pax3 and was phenocopied using Pax3-specific target protectors. Loss of myogenin after antagomir injection was rescued by Pax3 knockdown using a splice morpholino, suggesting that miR-1/miR-206 control somite myogenesis primarily through interactions with Pax3. Our studies reveal an important role for miR-1/miR-206 in providing precision to the timing of somite myogenesis. We propose that posttranscriptional control of Pax3 downstream of miR-1/miR-206 is required to stabilize myoblast commitment and subsequent differentiation. Given that mutually exclusive expression of miRNAs and their targets is a prevailing theme in development, our findings suggest that miRNA may provide a general mechanism for the unequivocal commitment underlying stem cell differentiation

    miR‐24 and its target gene Prdx6 regulate viability and senescence of myogenic progenitors during aging

    Get PDF
    Satellite cell-dependent skeletal muscle regeneration declines during aging. Disruptions within the satellite cells and their niche, together with alterations in the myofibrillar environment, contribute to age-related dysfunction and defective muscle regeneration. In this study, we demonstrated an age-related decline in satellite cell viability and myogenic potential and an increase in ROS and cellular senescence. We detected a transient upregulation of miR-24 in regenerating muscle from adult mice and downregulation of miR-24 during muscle regeneration in old mice. FACS-sorted satellite cells were characterized by decreased levels of miR-24 and a concomitant increase in expression of its target: Prdx6. Using GFP reporter constructs, we demonstrated that miR-24 directly binds to its predicted site within Prdx6 mRNA. Subtle changes in Prdx6 levels following changes in miR-24 expression indicate miR-24 plays a role in fine-tuning Prdx6 expression. Changes in miR-24 and Prdx6 levels were associated with altered mitochondrial ROS generation, increase in the DNA damage marker: phosphorylated-H2Ax and changes in viability, senescence, and myogenic potential of myogenic progenitors from mice and humans. The effects of miR-24 were more pronounced in myogenic progenitors from old mice, suggesting a context-dependent role of miR-24 in these cells, with miR-24 downregulation likely a part of a compensatory response to declining satellite cell function during aging. We propose that downregulation of miR-24 and subsequent upregulation of Prdx6 in muscle of old mice following injury are an adaptive response to aging, to maintain satellite cell viability and myogenic potential through regulation of mitochondrial ROS and DNA damage pathways
    corecore