115 research outputs found
Sheepskin Effects in Japan
Using data for the 1990?s, this paper examines the role of sheepskin effects in the returns to education for Japan. Our estimations indicate that sheepskin effects explain about 50% of the total returns to schooling. We further find that sheepskin effects are only important for workers in small firms with the size of these effects being similar to comparable estimates for the US. These results could be explained by the particular recruitment system of large firms in Japan, which makes the university diploma as a screening device unimportant for large firms
Optimization of Rear Point Contact Geometry by Means of 3-D Numerical Simulation
Abstract In this work three-dimensional (3-D) numerical simulations, validated by the experimental measurements of a reference cell, have been performed to optimize the rear contact geometry of a PERC-type solar cell, featuring a high sheet resistance (140 Ω/sq) phosphorus-doped emitter and a front-side metallization with narrow and highly-conductive electro-plated copper lines (40 μm wide) on lowly resistive Ti contacts. The simulation results show that an optimization of the rear point contact design potentially leads to an efficiency improvement of 0.68%abs compared to the reference cell
Computing small pivot-minors.
A graph G contains a graph H as a pivot-minor if H can be obtained from G by applying a sequence of vertex deletions and edge pivots. Pivot-minors play an important role in the study of rank-width. However, so far, pivot-minors have only been studied from a structural perspective. We initiate a systematic study into their complexity aspects. We first prove that the PIVOT-MINOR problem, which asks if a given graph G contains a given graph H as a pivot-minor, is NP-complete. If H is not part of the input, we denote the problem by H-PIVOT-MINOR. We give a certifying polynomial-time algorithm for H -PIVOT-MINOR for every graph H with |V(H)|≤4|V(H)|≤4 except when H∈{K4,C3+P1,4P1}H∈{K4,C3+P1,4P1}, via a structural characterization of H-pivot-minor-free graphs in terms of a set FHFH of minimal forbidden induced subgraphs
Protein Diffusion in Mammalian Cell Cytoplasm
We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the cytoplasm, nucleus, plasma membrane, and nuclear envelope, in which environment protein motion is modeled by fully numerical mesoscopic methods. Finer cellular structures that cannot be resolved with the imaging technique, which significantly affect protein motion, are accounted for in this method by assigning an effective, position-dependent porosity to the cell. This porosity can also be determined by confocal microscopy using the equilibrium distribution of a non-binding fluorescent protein. Distinction can now be made within this method between diffusion in the liquid phase of the cell (cytosol/nucleosol) and the cytoplasm/nucleoplasm. Here we applied the method to analyze fluorescence recovery after photobleach (FRAP) experiments in which the diffusion coefficient of a freely-diffusing model protein was determined for two different cell lines, and to explain the clear difference typically observed between conventional FRAP results and those of fluorescence correlation spectroscopy (FCS). A large difference was found in the FRAP experiments between diffusion in the cytoplasm/nucleoplasm and in the cytosol/nucleosol, for all of which the diffusion coefficients were determined. The cytosol results were found to be in very good agreement with those by FCS
Cell cyclins: triggering elements of cancer or not?
Cyclins are indispensable elements of the cell cycle and derangement of their function can lead to cancer formation. Recent studies have also revealed more mechanisms through which cyclins can express their oncogenic potential. This review focuses on the aberrant expression of G1/S cyclins and especially cyclin D and cyclin E; the pathways through which they lead to tumour formation and their involvement in different types of cancer. These elements indicate the mechanisms that could act as targets for cancer therapy
Efficient ex vivo expansion of conserved element vaccine-specific CD8+ T-cells from SHIV-infected, ART-suppressed nonhuman primates
HIV-specific T cells are necessary for control of HIV-1 replication but are largely insufficient for viral clearance. This is due in part to these cells’ recognition of immunodominant but variable regions of the virus, which facilitates viral escape via mutations that do not incur viral fitness costs. HIV-specific T cells targeting conserved viral elements are associated with viral control but are relatively infrequent in people living with HIV (PLWH). The goal of this study was to increase the number of these cells via an ex vivo cell manufacturing approach derived from our clinically-validated HIV-specific expanded T-cell (HXTC) process. Using a nonhuman primate (NHP) model of HIV infection, we sought to determine i) the feasibility of manufacturing ex vivo-expanded virus-specific T cells targeting viral conserved elements (CE, CE-XTCs), ii) the in vivo safety of these products, and iii) the impact of simian/human immunodeficiency virus (SHIV) challenge on their expansion, activity, and function. NHP CE-XTCs expanded up to 10-fold following co-culture with the combination of primary dendritic cells (DCs), PHA blasts pulsed with CE peptides, irradiated GM-K562 feeder cells, and autologous T cells from CE-vaccinated NHP. The resulting CE-XTC products contained high frequencies of CE-specific, polyfunctional T cells. However, consistent with prior studies with human HXTC and these cells’ predominant CD8+ effector phenotype, we did not observe significant differences in CE-XTC persistence or SHIV acquisition in two CE-XTC-infused NHP compared to two control NHP. These data support the safety and feasibility of our approach and underscore the need for continued development of CE-XTC and similar cell-based strategies to redirect and increase the potency of cellular virus-specific adaptive immune responses
- …