810 research outputs found

    An Investigation into Sleep Environment as a Multi-Functional Space

    Full text link
    The purpose of this study is to evaluate the multi-functional use of the domestic sleep environment (bedroom) and present evidence on outcomes that can be identified. By looking at the sleep environment in a broader context and considering the use of the bedroom space besides sleeping, this research responds to an information gap in sleep studies. A survey with multiple-choice questionnaire items was conducted with 304 participants in Australia to investigate the relationship between occupants’ use of the bedroom space and their sleep habits. We found evidence that today’s bedrooms are used for more than just sleeping, reflecting the respondents’ multi-functional needs. Of the respondents, 60% agreed to have a consistent sleeping routine, while 49% answered they have/might have a sleep problem. The mean hours spent in a sleeping environment are 9.31, while the sleeping mean hours are 7.12. While 40% reported using the bedroom as their living space, 61% said they prefer to use it only for sleep. Age, occupation and the bedroom’s location affect bedroom use and preferences. This study provides an initial inquiry into developing design strategies and understanding on the intertwined relationship between sleep and its environment

    High Performance Fortran and Possible Extensions to support Conjugate Gradient Algorithms

    Get PDF
    We evaluate the High-Performance Fortran (HPF) language for the compact expression and efficient implementation of conjugate gradient iterative matrix-solvers on High Performance Computing and Communications(HPCC) platforms. We discuss the use of intrinsic functions, data distribution directives and explicitly parallel constructs to optimize performance by minimizing communications requirements in a portable manner. We focus on implementations using the existing HPF definitions but also discuss issues arising that may influence a revised definition for HPF-2. Some of the codes discussed are available on the World Wide Web at http://www.npac.syr.edu/hpfa/ alongwith other educational and discussion material related to applications in HPF

    Comorbid Medical Conditions as Predictors of Overall Survival in Glioblastoma Patients

    Get PDF
    Glioblastoma (GBM) is an aggressive central nervous system tumor with a poor prognosis. This study was conducted to determine any comorbid medical conditions that are associated with survival in GBM. Data were collected from medical records of all patients who presented to VCU Medical Center with GBM between January 2005 and February 2015. Patients who underwent surgery/biopsy were considered for inclusion. Cox proportional hazards regression modeling was performed to assess the relationship between survival and sex, race, and comorbid medical conditions. 163 patients met inclusion criteria. Comorbidities associated with survival on individual-characteristic analysis included: history of asthma (Hazard Ratio [HR]: 2.63; 95% Confidence Interval [CI]: 1.24–5.58; p = 0.01), hypercholesterolemia (HR: 1.95; 95% CI: 1.09–3.50; p = 0.02), and incontinence (HR: 2.29; 95% CI: 0.95–5.57; p = 0.07). History of asthma (HR: 2.22; 95% CI: 1.02–4.83; p = 0.04) and hypercholesterolemia (HR: 1.99; 95% CI: 1.11–3.56; p = 0.02) were associated with shorter survival on multivariable analysis. Surgical patients with GBM who had a prior history of asthma or hypercholesterolemia had significantly higher relative risk for mortality on individual-characteristic and multivariable analyses

    On embodied memetic evolution and the emergence of behavioural traditions in Robots

    Get PDF
    This paper describes ideas and initial experiments in embodied imitation using e-puck robots, developed as part of a project whose aim is to demonstrate the emergence of artificial culture in collective robot systems. Imitated behaviours (memes) will undergo variation because of the noise and heterogeneities of the robots and their sensors. Robots can select which memes to enact, and-because we have a multi-robot collective-memes are able to undergo multiple cycles of imitation, with inherited characteristics. We thus have the three evolutionary operators: variation, selection and inheritance, and-as we describe in this paper-experimental trials show that we are able to demonstrate embodied movement-meme evolution. © 2011 Springer-Verlag

    Structure-based design and synthesis of antiparasitic pyrrolopyrimidines targeting pteridine reductase 1

    Get PDF
    The treatment of Human African Trypanosomiasis remains a major unmet health need in sub-Saharan Africa. Approaches involving new molecular targets are important and pteridine reductase 1 (PTR1), an enzyme that reduces dihydrobiopterin in Trypanosoma spp. has been identified as a candidate target and it has been shown previously that substituted pyrrolo[2,3-d]pyrimidines are inhibitors of PTR1 from T. brucei (J. Med. Chem. 2010, 53, 221-229). In this study, 61 new pyrrolo[2,3-d]pyrimidines have been prepared, designed with input from new crystal structures of 23 of these compounds complexed with PTR1, and evaluated in screens for enzyme inhibitory activity against PTR1 and in vitro antitrypanosomal activity. 8 compounds were sufficiently active in both screens to take forward to in vivo evaluation. Thus although evidence for trypanocidal activity in a stage I disease model in mice was obtained, the compounds were too toxic to mice for further development

    New Physics in b -> s mu+ mu-: CP-Conserving Observables

    Full text link
    We perform a comprehensive study of the impact of new-physics operators with different Lorentz structures on decays involving the b -> s mu+ mu- transition. We examine the effects of new vector-axial vector (VA), scalar-pseudoscalar (SP) and tensor (T) interactions on the differential branching ratios and forward-backward asymmetries (A_{FB}'s) of Bsbar -> mu+ mu-, Bdbar -> Xs mu+ mu-, Bsbar -> mu+ mu- gamma, Bdbar -> Kbar mu+ mu-, and Bdbar -> K* mu+ mu-, taking the new-physics couplings to be real. In Bdbar -> K* mu+ mu-, we further explore the polarization fraction f_L, the angular asymmetry A_T^{(2)}, and the longitudinal-transverse asymmetry A_{LT}. We identify the Lorentz structures that would significantly impact these observables, providing analytical arguments in terms of the contributions from the individual operators and their interference terms. In particular, we show that while the new VA operators can significantly enhance most of the asymmetries beyond the Standard Model predictions, the SP and T operators can do this only for A_{FB} in Bdbar -> Kbar mu+ mu-.Comment: 54 pages, JHEP format, 45 figures (included). 5/6/2013: typos in K* mu mu angular coefficients corrected, typos in Eq. (D.12) corrected, added a missing term in I3LT in Eq. (D.16). Numerical analysis unchange

    Estimating the costs of air pollution to the National Health Service and social care : An assessment and forecast up to 2035

    Get PDF
    BACKGROUND: Air pollution damages health by promoting the onset of some non-communicable diseases (NCDs), putting additional strain on the National Health Service (NHS) and social care. This study quantifies the total health and related NHS and social care cost burden due to fine particulate matter (PM2.5) and nitrogen dioxide (NO2) in England. METHOD AND FINDINGS: Air pollutant concentration surfaces from land use regression models and cost data from hospital admissions data and a literature review were fed into a microsimulation model, that was run from 2015 to 2035. Different scenarios were modelled: (1) baseline 'no change' scenario; (2) individuals' pollutant exposure is reduced to natural (non-anthropogenic) levels to compute the disease cases attributable to PM2.5 and NO2; (3) PM2.5 and NO2 concentrations reduced by 1 μg/m3; and (4) NO2 annual European Union limit values reached (40 μg/m3). For the 18 years after baseline, the total cumulative cost to the NHS and social care is estimated at £5.37 billion for PM2.5 and NO2 combined, rising to £18.57 billion when costs for diseases for which there is less robust evidence are included. These costs are due to the cumulative incidence of air-pollution-related NCDs, such as 348,878 coronary heart disease cases estimated to be attributable to PM2.5 and 573,363 diabetes cases estimated to be attributable to NO2 by 2035. Findings from modelling studies are limited by the conceptual model, assumptions, and the availability and quality of input data. CONCLUSIONS: Approximately 2.5 million cases of NCDs attributable to air pollution are predicted by 2035 if PM2.5 and NO2 stay at current levels, making air pollution an important public health priority. In future work, the modelling framework should be updated to include multi-pollutant exposure-response functions, as well as to disaggregate results by socioeconomic status

    Comparisons of observed and modelled lake δ18O variability

    Get PDF
    With the substantial number of lake sediment δ18O records published in recent decades, a quantitative, process-based understanding of these systems can increase our understanding of past climate change. We test mass balance models of lake water δ18O variability against five years of monthly monitoring data from lakes with different hydrological characteristics, in the East-Midlands region of the UK, and the local isotope composition of precipitation. These mass balance models can explain up to 74% of the measured lake water isotope variability. We investigate the sensitivity of the model to differing calculations of evaporation amount, the amount of groundwater, and to different climatic variables. We show there is only a small range of values for groundwater exchange flux that can produce suitable lake water isotope compositions and that variations in evaporation and precipitation are both required to produce recorded isotope variability in lakes with substantial evaporative water losses. We then discuss the potential for this model to be used in a long-term, palaeo-scenario. This study demonstrates how long term monitoring of a lake system can lead to the development of robust models of lake water isotope compositions. Such systematics-based explanations allow us to move from conceptual, to more quantified reconstructions of past climates and environments

    The integration of social concerns into electricity power planning : a combined delphi and AHP approach

    Get PDF
    The increasing acceptance of the principle of sustainable development has been a major driving force towards new approaches to energy planning. This is a complex process involving multiple and conflicting objectives, in which many agents were able to influence decisions. The integration of environmental, social and economic issues in decision making, although fundamental, is not an easy task, and tradeoffsmust be made. The increasing importance of social aspects adds additional complexity to the traditional models that must now deal with variables recognizably difficult to measure in a quantitative scale. This study explores the issue of the social impact, as a fundamental aspect of the electricity planning process, aiming to give a measurable interpretation of the expected social impact of future electricity scenarios. A structured methodology, based on a combination of the Analytic Hierarchy Process and Delphi process, is proposed. The methodology is applied for the social evaluation of future electricity scenarios in Portugal, resulting in the elicitation and assignment of average social impact values for these scenarios. The proposed tool offers guidance to decision makers and presents a clear path to explicitl

    An influenza virus-inspired polymer system for the timed release of siRNA

    Get PDF
    Small interfering RNA silences specific genes by interfering with mRNA translation, and acts to modulate or inhibit specific biological pathways; a therapy that holds great promise in the cure of many diseases. However, the naked small interfering RNA is susceptible to degradation by plasma and tissue nucleases and due to its negative charge unable to cross the cell membrane. Here we report a new polymer carrier designed to mimic the influenza virus escape mechanism from the endosome, followed by a timed release of the small interfering RNA in the cytosol through a self-catalyzed polymer degradation process. Our polymer changes to a negatively charged and non-toxic polymer after the release of small interfering RNA, presenting potential for multiple repeat doses and long-term treatment of diseases
    corecore