1,294 research outputs found
Locally Chain-Parsable Languages
If a context-free language enjoys the local parsability property then, no matter how the source string is segmented, each segment can be parsed in- dependently, and an efficient parallel parsing algorithm becomes possible. The new class of locally chain-parsable languages (LCPL), included in deterministic context-free languages, is here defined by means of the chain-driven automa- ton and characterized by decidable properties of grammar derivations. Such au- tomaton decides to reduce or not a factor in a way purely driven by the terminal characters, thus extending the well-known concept of Input-Driven (ID) (visibly) pushdown machines. LCPL extend and improve the practically relevant operator- precedence languages (Floyd), which are known to strictly include the ID lan- guages, and for which a parallel-parser generator exists. Consistently with the classical results for ID, chain-compatible LCPL are closed under reversal and Boolean operations, and language inclusion is decidable
Flipping quantum coins
Coin flipping is a cryptographic primitive in which two distrustful parties
wish to generate a random bit in order to choose between two alternatives. This
task is impossible to realize when it relies solely on the asynchronous
exchange of classical bits: one dishonest player has complete control over the
final outcome. It is only when coin flipping is supplemented with quantum
communication that this problem can be alleviated, although partial bias
remains. Unfortunately, practical systems are subject to loss of quantum data,
which restores complete or nearly complete bias in previous protocols. We
report herein on the first implementation of a quantum coin-flipping protocol
that is impervious to loss. Moreover, in the presence of unavoidable
experimental noise, we propose to use this protocol sequentially to implement
many coin flips, which guarantees that a cheater unwillingly reveals
asymptotically, through an increased error rate, how many outcomes have been
fixed. Hence, we demonstrate for the first time the possibility of flipping
coins in a realistic setting. Flipping quantum coins thereby joins quantum key
distribution as one of the few currently practical applications of quantum
communication. We anticipate our findings to be useful for various
cryptographic protocols and other applications, such as an online casino, in
which a possibly unlimited number of coin flips has to be performed and where
each player is free to decide at any time whether to continue playing or not.Comment: 17 pages, 3 figure
Implementation of the LDA+U method using the full potential linearized augmented plane wave basis
We provide a straightforward and efficient procedure to combine LDA+U total
energy functional with the full potential linearized augmented plane wave
method. A detailed derivation of the LDA+U Kohn-Sham type equations is
presented for the augmented plane wave basis set, and a simple
``second-variation'' based procedure for self-consistent LDA+U calculations is
given. The method is applied to calculate electronic structure and magnetic
properties of NiO and Gd. The magnetic moments and band eigenvalues obtained
are in very good quantitative agreement with previous full potential LMTO
calculations. We point out that LDA+U reduces the total d charge on Ni by 0.1
in NiO
Islamic Sectarianism in United States Prisons: The Religious Right of Shi\u27a Inmates to Worship Separately From Their Fellow Sunni Inmates
The Road to Quantum Computational Supremacy
We present an idiosyncratic view of the race for quantum computational
supremacy. Google's approach and IBM challenge are examined. An unexpected
side-effect of the race is the significant progress in designing fast classical
algorithms. Quantum supremacy, if achieved, won't make classical computing
obsolete.Comment: 15 pages, 1 figur
Compressed Membership for NFA (DFA) with Compressed Labels is in NP (P)
In this paper, a compressed membership problem for finite automata, both
deterministic and non-deterministic, with compressed transition labels is
studied. The compression is represented by straight-line programs (SLPs), i.e.
context-free grammars generating exactly one string. A novel technique of
dealing with SLPs is introduced: the SLPs are recompressed, so that substrings
of the input text are encoded in SLPs labelling the transitions of the NFA
(DFA) in the same way, as in the SLP representing the input text. To this end,
the SLPs are locally decompressed and then recompressed in a uniform way.
Furthermore, such recompression induces only small changes in the automaton, in
particular, the size of the automaton remains polynomial.
Using this technique it is shown that the compressed membership for NFA with
compressed labels is in NP, thus confirming the conjecture of Plandowski and
Rytter and extending the partial result of Lohrey and Mathissen; as it is
already known, that this problem is NP-hard, we settle its exact computational
complexity. Moreover, the same technique applied to the compressed membership
for DFA with compressed labels yields that this problem is in P; for this
problem, only trivial upper-bound PSPACE was known
Applied Plasma Research
Contains research objectives and reports on three research projects.National Science Foundation (Grant GK-2581)Joint Services Electronics Program under Contract DA 28-043-AMC-02536(E
Transmembrane protein PERP is a component of tessellate junctions and of other junctional and non-junctional plasma membrane regions in diverse epithelial and epithelium-derived cells
Protein PERP (p53 apoptosis effector related to PMP-22) is a small (21.4 kDa) transmembrane polypeptide with an amino acid sequence indicative of a tetraspanin character. It is enriched in the plasma membrane and apparently contributes to cell-cell contacts. Hitherto, it has been reported to be exclusively a component of desmosomes of some stratified epithelia. However, by using a series of newly generated mono- and polyclonal antibodies, we show that protein PERP is not only present in all kinds of stratified epithelia but also occurs in simple, columnar, complex and transitional epithelia, in various types of squamous metaplasia and epithelium-derived tumors, in diverse epithelium-derived cell cultures and in myocardial tissue. Immunofluorescence and immunoelectron microscopy allow us to localize PERP predominantly in small intradesmosomal locations and in variously sized, junction-like peri- and interdesmosomal regions (“tessellate junctions”), mostly in mosaic or amalgamated combinations with other molecules believed, to date, to be exclusive components of tight and adherens junctions. In the heart, PERP is a major component of the composite junctions of the intercalated disks connecting cardiomyocytes. Finally, protein PERP is a cobblestone-like general component of special plasma membrane regions such as the bile canaliculi of liver and subapical-to-lateral zones of diverse columnar epithelia and upper urothelial cell layers. We discuss possible organizational and architectonic functions of protein PERP and its potential value as an immunohistochemical diagnostic marker
The severity of pandemic H1N1 influenza in the United States, from April to July 2009: A Bayesian analysis
Background: Accurate measures of the severity of pandemic (H1N1) 2009 influenza (pH1N1) are needed to assess the likely impact of an anticipated resurgence in the autumn in the Northern Hemisphere. Severity has been difficult to measure because jurisdictions with large numbers of deaths and other severe outcomes have had too many cases to assess the total number with confidence. Also, detection of severe cases may be more likely, resulting in overestimation of the severity of an average case. We sought to estimate the probabilities that symptomatic infection would lead to hospitalization, ICU admission, and death by combining data from multiple sources. Methods and Findings: We used complementary data from two US cities: Milwaukee attempted to identify cases of medically attended infection whether or not they required hospitalization, while New York City focused on the identification of hospitalizations, intensive care admission or mechanical ventilation (hereafter, ICU), and deaths. New York data were used to estimate numerators for ICU and death, and two sources of data - medically attended cases in Milwaukee or self-reported influenza-like illness (ILI) in New York - were used to estimate ratios of symptomatic cases to hospitalizations. Combining these data with estimates of the fraction detected for each level of severity, we estimated the proportion of symptomatic patients who died (symptomatic case-fatality ratio, sCFR), required ICU (sCIR), and required hospitalization (sCHR), overall and by age category. Evidence, prior information, and associated uncertainty were analyzed in a Bayesian evidence synthesis framework. Using medically attended cases and estimates of the proportion of symptomatic cases medically attended, we estimated an sCFR of 0.048% (95% credible interval [CI] 0.026%-0.096%), sCIR of 0.239% (0.134%-0.458%), and sCHR of 1.44% (0.83%-2.64%). Using self-reported ILI, we obtained estimates approximately 7-96lower. sCFR and sCIR appear to be highest in persons aged 18 y and older, and lowest in children aged 5-17 y. sCHR appears to be lowest in persons aged 5-17; our data were too sparse to allow us to determine the group in which it was the highest. Conclusions: These estimates suggest that an autumn-winter pandemic wave of pH1N1 with comparable severity per case could lead to a number of deaths in the range from considerably below that associated with seasonal influenza to slightly higher, but with the greatest impact in children aged 0-4 and adults 18-64. These estimates of impact depend on assumptions about total incidence of infection and would be larger if incidence of symptomatic infection were higher or shifted toward adults, if viral virulence increased, or if suboptimal treatment resulted from stress on the health care system; numbers would decrease if the total proportion of the population symptomatically infected were lower than assumed.published_or_final_versio
International longitudinal registry of patients with atrial fibrillation and treated with rivaroxaban: RIVaroxaban Evaluation in Real life setting (RIVER)
Background
Real-world data on non-vitamin K oral anticoagulants (NOACs) are essential in determining whether evidence from randomised controlled clinical trials translate into meaningful clinical benefits for patients in everyday practice. RIVER (RIVaroxaban Evaluation in Real life setting) is an ongoing international, prospective registry of patients with newly diagnosed non-valvular atrial fibrillation (NVAF) and at least one investigator-determined risk factor for stroke who received rivaroxaban as an initial treatment for the prevention of thromboembolic stroke. The aim of this paper is to describe the design of the RIVER registry and baseline characteristics of patients with newly diagnosed NVAF who received rivaroxaban as an initial treatment.
Methods and results
Between January 2014 and June 2017, RIVER investigators recruited 5072 patients at 309 centres in 17 countries. The aim was to enroll consecutive patients at sites where rivaroxaban was already routinely prescribed for stroke prevention. Each patient is being followed up prospectively for a minimum of 2-years. The registry will capture data on the rate and nature of all thromboembolic events (stroke / systemic embolism), bleeding complications, all-cause mortality and other major cardiovascular events as they occur. Data quality is assured through a combination of remote electronic monitoring and onsite monitoring (including source data verification in 10% of cases). Patients were mostly enrolled by cardiologists (n = 3776, 74.6%), by internal medicine specialists 14.2% (n = 718) and by primary care/general practice physicians 8.2% (n = 417). The mean (SD) age of the population was 69.5 (11.0) years, 44.3% were women. Mean (SD) CHADS2 score was 1.9 (1.2) and CHA2DS2-VASc scores was 3.2 (1.6). Almost all patients (98.5%) were prescribed with once daily dose of rivaroxaban, most commonly 20 mg (76.5%) and 15 mg (20.0%) as their initial treatment; 17.9% of patients received concomitant antiplatelet therapy. Most patients enrolled in RIVER met the recommended threshold for AC therapy (86.6% for 2012 ESC Guidelines, and 79.8% of patients according to 2016 ESC Guidelines).
Conclusions
The RIVER prospective registry will expand our knowledge of how rivaroxaban is prescribed in everyday practice and whether evidence from clinical trials can be translated to the broader cross-section of patients in the real world
- …
