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Abstract
In this paper, a compressed membership problem for finite automata, both deterministic (DFAs)
and non-deterministic (NFAs), with compressed transition labels is studied. The compression
is represented by straight-line programs (SLPs), i.e. context-free grammars generating exactly
one string. A novel technique of dealing with SLPs is introduced: the SLPs are recompressed,
so that substrings of the input text are encoded in SLPs labelling the transitions of the NFA
(DFA) in the same way, as in the SLP representing the input text. To this end, the SLPs are
locally decompressed and then recompressed in a uniform way. Furthermore, in order to reflect
the recompression in the NFA, we need to modify it only a little, in particular its size stays
polynomial in the input size.

Using this technique it is shown that the compressed membership for NFA with compressed
labels is in NP, thus confirming the conjecture of Plandowski and Rytter [21] and extending the
partial result of Lohrey and Mathissen [14]; as this problem is known to be NP-hard, we settle
its exact computational complexity. Moreover, the same technique applied to the compressed
membership for DFA with compressed labels yields that this problem is in P, and this problem
is known to be P-hard.
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1 Introduction

1.1 Compression and Straight-Line Programms

Due to ever-increasing amount of data, compression methods are widely applied in order to
decrease the data’s size. The stored data is processed from time to time and decompressing it
on each occasion is wasteful. Thus there is a large demand for algorithms working directly on
the compressed representation of the data, without explicit decompression. Such task is not
as desperate, as it may seem: it is a popular outlook that compression basically extracts the
hidden structure of the text and if the compression rate is high, the text must have a lot of
internal structure. So if data is compressed well, it has a structure that can be exploited by
algorithms. Indeed, efficient algorithms for fundamental text operations (pattern matching,
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checking equality, etc.) are known for various practically used compression methods (LZ,
LZW, etc.) [2, 3, 5].

Practical compression methods, like LZW or LZ variants, differ and so only algorithms
for data compressed using them are also different. This leads to a plethora of algorithms for
various compression variants and string operations. However, a different approach is also
explored: for some applications and for most of theory-oriented considerations it would be
useful to model the practical compression standard by a more mathematically well-founded
method. This idea, lay at the foundations of the notion of Straight-Line Programms (SLP),
whose instance can be simply seen as context-free grammars generating exactly one string.

SLPs are the most popular theoretical model of compression. This is on one hand
motivated by a simple, ‘clean’ and appealing definition, on the other hand, they model the
LZ compression standard: each LZ compressed text can be converted into an equivalent SLP
with only logarithmic, with respect to decompressed data’s size, overhead (and in polynomial
time) while each SLP can be converted to an equivalent SLP with just a constant overhead
(and in polynomial time).

The approach of modelling compression by SLP in order to develop efficient algorithms
turned out to be fruitful. Algorithmic problems for SLP-compressed input strings were
considered and successfully solved [10, 11, 18]. The recent state-of-the-art efficient algorithms
for pattern matching in LZ and LZW compressed text essentially use the reformulation of
LZW and LZ methods in terms of SLPs [2, 3]. SLPs found their usage also in programme
verification [4, 9]. Surprisingly, while SLPs were introduced mainly as a model for practical
applications, they turned out to be useful also in strictly theoretical branches of computer
science, for instance, in the word equations [20, 19]; in particular, the currently best PSPACE
bound was obtained in this fashion by Plandowski [19].

1.2 Membership problem

As SLPs are used both in theoretical and applied research in computer science, tools for
dealing with them should be developed. In particular, one should be aware that whenever
working with strings, these may be supplied as respective SLPs. Hence, all the usual string
problems should be reinvestigated in the compressed setting, as the classical algorithms may
not apply directly, be inefficient or the problems themselves may become computationally
difficult.

From language theory point of view, the crucial questions stated in terms of strings, is
the one of compressed string recognition. To be more precise, we consider classic membership
problems, i.e. recognition by automata, generation by a grammar etc., in which the input is
supplied as an SLP. We refer to such problems as compressed membership problems. These
were first studied in the pioneering work of Plandowski and Rytter [21], who considered
compressed membership problem for various formalism for defining languages. Already in this
work it was observed that we should precisely specify, what part of the input is compressed.
Clearly the input string, but what about the language representation (i.e. regular expression,
automaton, grammar, etc.). Should it be also compressed or not? Both variant of the problem
are usually considered, with the following naming convention: when only the input string is
compressed, we use a name compressed membership, when also the language representation,
we prepend fully to the name.

In years to come, the compressed membership problem was investigated for various
language classes [5, 7, 12, 13, 21]. Compressed word problem for groups and monoids [12, 15,
16], which can be seen as a generalisation of membership problem, was also investigated.

Despite the large attention in the research community, the exact computational complexity
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of some problems remained open. The most notorious of those is the fully compressed
membership problem (FCMP) for NFA, considered already in the work of Plandowski and
Rytter [21]. Here, the compression of NFA is done by allowing it to have transitions by
strings, instead of single letters, and representing these strings as SLPs.

It is relatively easy to observe that the compressed membership problem for the NFA
is in P, however, the status of the fully compressed variant remained open for a long time.
Some partial results were obtained by Plandowski and Rytter [21], who observed that it is
in PSPACE and is NP-hard for the case of one-letter alphabet, both of these bounds being
relatively simple. Moreover, they showed that this problem is in NP for some particular cases,
for instance, for one-letter alphabet. Further work on the problem was done by Lohrey and
Mathissen [14], who demonstrated that if the strings defined by SLP have polynomial periods,
the problem is in NP, and when all strings are highly aperiodic, it is in P. Concerning the
case of DFAs, it is known that even for a fixed regular language, the compressed membership
is P-hard [17, 1], and no upper-bound better than PSPACE was known.

1.3 Our results and techniques

We establish the computational complexity of fully compressed membership problems for
both NFAs and DFAs.

I Theorem 1. Fully compressed membership problem for NFA is in NP, for DFA it is in P.

Our approach to the problem is essentially different than the ones of Plandowski and
Rytter [21] and Lohrey and Mathissen [14]. The earlier work focused on the properties of
strings described by SLPs. We take a completely different route: we analyse and change the
way strings are described by the SLPs in instance. That is, we focus on the SLPs, and not
on the encoded strings. Roughly, our algorithm aims at having all the strings in the instance
compressed ‘in the same way’. To achieve this goal, we decompress the SLPs. Since the
compressed text can be exponentially long, we do this locally: we introduce explicit strings
into the rules’ bodies. Then, we recompress these explicit strings uniformly. Since such pieces
of text are compressed in the same way, we can ‘forget’ about the original substrings of the
input and treat the introduced nonterminals as atomic letters. Such recompression shortens
the text significantly: one ‘round’ of recompression, in which every pair of letters that was
present at the beginning of the ‘round’ is compressed, should shorten the encoded strings by
a constant factor.

Other application of the technique

We stress that the idea of local decompression and recompression of SLP is new and promising:
there is hope that it can be applied to other problem related to SLPs. In fact between the
submission of this work and its acceptance the author successfully applied this technique in
fully compressed pattern matching [6], obtaining a faster algorithm for this problem.

2 Preliminaries

2.1 Straight line programmes

Formally, a Straight line programme (SLP) is context free grammar G with a language
consisting of exactly one string. Usually it is assumed that G is in a Chomsky normal form,
i.e. each production is either of the form X → Y Z or X → a. By this assumption, strings
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defined by G’s nonterminals have length at most 2n; since our algorithm will replace some
substrings by shorter ones, none string defined by SLPs during the run of algorithm will
exceed this length.

We denote the string defined by nonterminal A by val(A) (like value). A symbol is either
a letter or a nonterminal. The notion of val extends to strings of symbols in an obvious way.

2.2 Input

The instance of the fully compressed membership problem (FCMP) for NFA consists of an
input string, represented by an SLP, and an NFA N , whose transitions may be labelled by
SLPs.

For our purposes it is more convenient to assume, that all SLPs are given as a single
context free grammar G with a set of nonterminals X = {X1, . . . , Xn}, the input string
is defined by Xn and the NFAs transitions are labelled with nonterminals of G. While
we require that the input grammar is in the Chomsky normal form, during the algorithm
we allow the grammar to be in a slightly more general form, described by the following
conditions:

each nonterminal has exactly one production, which is of the form (1a)

Xi → uXjvXk or Xi → uXjv or Xi → u, where u, v ∈ Σ∗ and j, k < i, (1b)

if val(Xi) = ε then Xi does not appear in the rules’ bodies. (1c)

The strings u, v and their substrings appear explicitly in a rule, this notion is introduced
to distinguish them from the substrings of val(Xi).

Without loss of generality we may assume that the input string starts and ends with
designated, unique symbols, denoted as $ and #. These are not essential, however, the first
and last letter of val(Xn) need to be treated in a somewhat special manner, furthermore,
this applies to these letters’ appearances in the NFA as well. Having special symbols for the
first and last letter makes the analysis smoother.

2.3 Input size, complexity classes

The size |G| of the representation of grammar G is the sum of length of G’s rules’ bodies. The
size |N | of the representation of NFA N is the sum of number of its states and transitions.
The size |Σ| of alphabet Σ is simply the number of elements in Σ.

The input (or, in general, current instance) size is polynomial in N , G, Σ and n, which
denotes the number of nonterminals in G. One of the crucial properties of our algorithm is
that n only decreases during the run of the algorithm.

By npolytime (polytime) we denote the class of algorithms running in non-deterministic
(deterministic, respectively) polynomial time, and by NP (P, respectively) the corresponding
complexity classes of the decision problems.

2.4 Automata, paths and labels, determinism

Since we investigate automata, proofs deal mainly with (accepting) paths for strings. the
constructed NFAs have transitions labelled with either letters, or non-terminals of G. That is
δ ⊆ Q× (Σ∪X )×Q. Consequently, a path P from state p1 to pk+1 is a sequence α1α2 . . . αk,
where αi ∈ Σ ∪ X and δ(pi, αi, pi+1). We write that P induces such a list of labels. The
val(P) defined by such a path P is simply val(α1 . . . αk). We also say that P is a path for a
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string val(P). A path is accepting, if it ends in an accepting state. A string w is accepted by
N if there is an accepting path from the starting state for w.

We consider also DFAs with compressed labels. Let us comment, what ‘determinism’
means here: a NFA with compressed labels is a deterministic, when for each state q and
any two transitions from q labelled with α and α′, the first letters of val(α) and val(α′)
are different. One could define determinism meaningfully in other ways, however, all these
notions seem to be polynomially equivalent.

2.5 Known results

We use the following basic result, which states that the FCMP, when the input string is over
a one-letter alphabet, is in NP for NFA and in P for DFA.

I Lemma 2 (cf. [21, Theorem 5]). The FCMP restricted to the input string over an alphabet
Σ = {a} is in NP for NFA and in P for DFA.

The second claim is trivial and the first claim can be easily inferred from the result of
Plandowski and Rytter [21, Theorem 5], who proved that this problem is in NP, when
Σ = {a}, i.e. also transitions in the NFA are labelled by powers of a only. In such a case a
path in NFA exists if and only if it satisfies an Eulerian-type condition: each state is entered
and leaved the same number of times. Since each edge is used at most expontentially many
times, a description of such a path can be guessed and then it can be verified whether it
satisfies the condition and defines a word of appropriate length.

3 Basic classifications and outline of the algorithm

In this section we present the outline of the algorithm for FCMP for NFAs. Its main part
consist of recompression, i.e. replacing strings appearing in val(Xn) by shorter ones. In
some cases, such replacing is harder, in other easier. It should be intuitively clear that it
depends on the position of letters inside encoded strings: if a is a first or last letter of some
val(Xi), then recompressing strings including a looks difficult, as such strings can be split
into different nonterminals and recompression requires heavy modification of G, or even
rebuilding of the NFA. On the other hand, if a letter a is only ‘inside’ strings encoded by
nonterminals, its compression is done only ‘inside’ rules of G, which seems easy. Thus, before
we state the algorithm, we firstly introduce classification of letters (and strings) into ‘easy’
and ‘difficult’ to compress.

3.1 Crossing appearances, types of letters, maximal blocks

We say that a string w has a crossing appearance in a (string defined by) nonterminal Xi with
a production Xi → uXjvXk, if w appears in val(Xi), but this appearance is not contained
in neither u, v, val(Xj) nor val(Xk). Intuitively, this appearance ‘crosses’ the symbols in
u val(Xj)v val(Xk), i.e. at the same time part of w is in the explicit substring (u or v) and
part is in the compressed strings (val(Xj) or val(Xk)). This notion is similarly defined for
nonterminals with productions of the form Xi → uXjv, productions of the form Xi → u

clearly do not have crossing appearances.
A string w has a crossing appearance in the NFA N , if there is a path in N inducing list

of labels α1α2, where α1, α2 ∈ X ∪ Σ with at least one of α1, α2 being a nonterminal, such
that w appears in a val(α1α2), but this appearance is not contained in the val(α1), nor in
val(α2). The intuition is similar as in the case of crossing appearance in a rule: it is possible
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that a string w is split between two transitions’ labels. Still, there is nothing difficult in
consecutive letter transitions, thus we treat such a case as a simple one.

We say that a pair of different letters ab is a crossing pair, if ab has a crossing appearance
of any kind. Otherwise, such a pair is non-crossing.

We say that a letter a ∈ Σ is left-outer (right-outer), if there is a nonterminal Xi, such
that a is the leftmost (rightmost, respectively) symbol in val(Xi). A letter is outer, if it is
left-outer or right-outer. Otherwise, the letter is inner. Notice that if a pair ab is crossing,
then b is left-outer or a is right-outer. The outer letters and crossing pairs correspond to the
intuitive notion of being ‘hard’ to compress.

The following lemma shows that while G may encode long strings, they have relatively
few different short substrings and few outer letters.

I Lemma 3. There are at most 2n different outer letters and at most |G| + 3n different
pairs of letters appearing in val(X1), . . . , val(Xn).

The set of outer letters, the set of crossing pairs and the set of non-crossing pairs appearing
in val(X1), . . . , val(Xn) can be computed in polytime.

The notions of (non-) crossing pairs do not apply to aa, still, an analog can be defined:
for a letter a ∈ Σ we say that a` is a a’s maximal block of length ` (or simply `-block), if it
appears in some string defined by some nonterminal and it is surrounded by letters other
than a, formally, if there exist two letters x, y ∈ Σ, where x 6= a 6= y and a nonterminal Xi,
such that xa`y is a substring of val(Xi). Similarly to crossing pairs, it can be shown that
there are not too many different maximal blocks of a.

I Lemma 4. For a letter a there are at most |G| different lengths of a’s maximal blocks in
val(X1), . . . , val(Xn). The set of these lengths can be calculated in polytime.

3.2 Outline of the algorithm

Our algorithm consists is based on two main operations performed on strings encoded by G

blocks compression of a For each a` that is and `-block in val(Xn) and ` > 0, replace all
a’s `-blocks in val(X1), . . . , val(Xn) by a fresh letter a`. Modify N accordingly.

pair compression of ab For two different letters ab replace each of ab in val(X1), . . . , val(Xn)
by a fresh letter c. Modify N accordingly.

We denote the string obtained from w by a’s blocks compression by BCa(w), and the string
obtained by compression of a pair ab into c by PCab→c(w).

We adopt the following notational convention throughout rest of the paper: whenever we
refer to a letter a`, it means that the last block compression was done for a and a` replaced
a’s `-blocks.

The main idea behind the algorithm is that block compression and pair compression
shorten the encoded texts significantly. The general schema is given in Algorithm 1.

There are two important remarks to be made:
there is no explicit non-deterministic operation in the code, however, it appears implicitly
in the term ‘modify the NFA accordingly’ in lines 4 and 10. Roughly, to perform such a
modification, one needs to solve FCMP for string a`, and this is known to be NP-hard.
the compression (both of pairs and blocks) is never applied to $, nor to #. The markers
were introduced so that we do not bother with strange behaviour when first or last letter
is compressed, and so we do not touch the markers.

Ideally, each letter of the input is compressed and so the | val(Xn)| halves in each iteration
of the main loop. The worst case scenario is not far from the ideal behabviour.
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Algorithm 1 Outline of the CompMem, which tests compressed membership

1: while | val(Xn) > n| do
2: while something changed do
3: for a: inner letter do
4: compress blocks of a, modify N accordingly
5: for non-crossing pair ab in val(Xn), a, b /∈ {$,#} do
6: compress ab, modify N accordingly
7: L← list of outer letters, except $ and #
8: . Including letters introduced in line 4 and 6
9: for a ∈ L do

10: compress blocks of a, modify N accordingly
11: for each a`b in val(Xn) do
12: compress a`b, modify N accordingly
13: Decompress Xn and solve the problem naively.

I Lemma 5. There are O(n) executions of the loop in line 1 of CompMem.

I Remark. Notice that pair compression PCab→b is in fact introducing a new nonterminal
with a production c→ ab, similarly BCa. Hence, CompMem creates new SLPs, that encode
strings from the instance. However, these new nonterminals are never expanded, they are
always treated as individual symbols. Thus it is better to think of them as letters. Moreover,
the analysis of running time of CompMem relies on the fact that no new nonterminals are
introduced by CompMem.

4 Details

In this section we describe in detail how to implement the block compression and pair
compression and how to modify the NFA. In particular, we are going to formulate the
connections between NFA and SLPs preserved during CompMem.

4.1 Invariants

The invariants below describe the grammar kept by CompMem.

SLP 1 The set of used nonterminals is a subset of X = {X1, . . . , Xn} and the productions
are of the form described in (1).

SLP 2 The nonterminal Xn has a production Xn → $uXn−1v#, where u, v ∈ (Σ \ {$,#})∗;
$, # are not used in other productions.

The following invariants represent the constraints on the NFA.

Aut 1 every transition of N is labelled by a single letter of Σ (letter transition) or by a
nonterminal (nonterminal transition) that does not define ε, each nonterminal labels
at most one transition. No transition is labelled with Xn.

Aut 2 there is a unique starting state that has a unique outgoing transition labelled by letter
$, and no incoming transitions; there is no other transition by $. Similarly, there is a
unique accepting state that has a unique incoming transition labelled by letter #, it
does not have any outgoing transitions; there is no other transition by # in N .
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CompMem will preserve (SLP 1)–(Aut 2), and we shall always assume that the input of the
subroutines satisfies (SLP 1)–(Aut 2).

We assume that the input instance satisfies (SLP 1)–(Aut 2), moreover that the input
grammar is in the Chomsky normal form. It is routine to transform (in polytime) the input
instances not satisfying these conditions into equivalent instances that satisfy them.

4.2 Compression of non-crossing pairs and inner letters

The compression of non-crossing pairs and block compression for inner letters is intuitively
easy: whenever these appear in strings encoded by G or on paths in N , they cannot be split
between nonterminals or between transitions. So we replace their explicit appearances in the
grammar and in the NFA. This is formalised and shown in this subsection

Consider a non-crossing pair ab. Since it is non-crossing, it can only appear in the the
explicit strings in the rules of G. Hence, compressing ab into a fresh letter c consists of
replacing each explicit ab by c in rules’ bodies. Still, ab can appear on a path in N . But
since ab is non-crossing, this can be either wholly inside a nonterminal transition (and so
compression was already taken care of), or on two consecutive letter transitions. This is also
easy to handle: whenever there is a path from p to q by a string ab, we introduce a new
letter transition by c from p to q. This description is formalised in PairComp.

To distinguish between the input and output G and N , we utilise the following convention:
‘unprimed’ names refer to the input (like G, Xi, N), while ‘primed’ symbols refer to the
output (like G′, X ′

i, N ′). This convention is used in lemmata concerning algorithms through
the paper.

Algorithm 2 PairComp(ab, c), which compresses a non-crossing pair ab into c

1: for each production Xi → α do
2: replace each explicit ab in α by c

3: for states p, q do
4: if δN (p, ab, q) then put a transition δN (p, c, q)

I Lemma 6. PairComp runs in polytime and preserves (SLP 1)–(Aut 2). When applied to a
non-crossing pair of letters ab, where a, b /∈ {$,#}, it implements the pair compression, i.e.
val(X ′

i) = PCab→c(val(Xi)), for each Xi.
N ′ recognises val(X ′

n) if and only if N recognises val(Xn). If N is a DFA, so is N ′.

We can apply the same approach to the inner letters block compression. However, in this
case, the modification of N uses non-determinism.

Since a is an inner letter, it cannot appear as the last or first letter of any nonterminal,
and so every maximal block of a in val(X1), . . . , val(Xn) is an explicit substring in one of
the rule’ bodies; so we simply replace explicit a` by a fresh letter a` in rules’ bodies. Before
considering the NFA, notice that as a is an inner letter, a` cannot have a crossing appearance
in N , and no nonterminal defines a`. Hence, when a` is a substring of a string defined by a
path in N , then a` appears wholly inside a nonterminal transition, or a` labels a path using
letter transitions only. The former case is taken care of by compression of a maximal blocks
in G, and in the latter case for each a` and each pair of states P and q we check whether
there is a path for a` from p to q using letter transitions only.
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Algorithm 3 BlockComp(a), which compresses inner letter a blocks
1: establish the lengths `1, . . . , `k of a’s maximal block
2: for each a`m do
3: for each production Xi → α do
4: replace every explicit maximal block a`m in α by a`m

5: for states p, q in N do
6: if δN (p, a`m , q) then . Check non-deterministically, see Lemma 2
7: put a transition δN (p, a`m

, q)

I Lemma 7. Suppose that BlockComp is applied for inner letter a /∈ {$,#}. Then
it preserves (SLP 1)–(Aut 2) and properly implements maximal block compression, i.e.
val(X ′

i) = BCa(val(Xi)) for each Xi.
The operations in line 6 of BlockComp can be performed in npolytime, other operations

can be performed in polytime.
Each of the new letters a` is inner. N recognises val(Xn) if and only if N ′ recognises

val(X ′
n) for some non-deterministic choices. If N is DFA, so is N ′.

4.3 Compression of outer letters and crossing pairs

Now, we turn our attention to the compression of outer letters and crossing pairs. The
outline is as follows: we fix an outer letter a and modify the instance, so that a becomes
inner. Then, BlockComp is applied to a. Next, we want to compress each pair of the form
a`b. Such a pair can be crossing, as b can be a left-outer letter. Thus, we modify the instance
again, so that none of a`b is a crossing pair so afterwards we compress it using PairComp.

4.3.1 Transforming an outer letter to an inner letter

The reason, why a is an outer letter, is that it is the first or the last symbol in some val(Xi).
To make it an inner letter, it is enough to remove each nonterminal’s a-prefix and a-suffix.
To be more precise: fix i and let val(Xi) = a`iuari , where u does not start nor end with a.
Then our goal is to modify G so that val(X ′

i) = u. (If val(Xi) is a power of a, we simply
give u = ε and ri = 0.) This can be done in a bottom-up fashion, starting from X1: it is
enough to calculate and memorise the lengths of the a-prefixes and a-suffixes for consecutive
nonterminals, see the operations in lines 1–4 of OutToIn. Then we need to modify the NFA
accordingly: it is enough to replace the transition labelled with Xi by path consisting of
three transitions, labelled with a`i , X ′

i and ari .
The removed a-prefixes and a-suffixes can be exponentially long, and so we store them

in the rules in a succinct way, i.e. a` is represented as (a, `); the size of representation of `

is O(log `), that is, linear in n. We say that such a grammar is in an a-succinct form. The
situation is similar for the NFA, as it might have transitions labelled with a`, which are
stored in succinct way as well. We say that N satisfies a-relaxed (Aut 1), if its transitions
are labelled by nonterminals, a single letter or by a`, where ` ≤ 2n.

I Lemma 8. OutToIn(a) for a /∈ {$,#} runs in polytime time and preserves (SLP 1)–(Aut
2), except that it a-relaxes (Aut 1). G′ is in the a-succinct form.

Let val(Xi) = a`iuia
ri , where ui does not begin, nor end with a. After OutToIn val(X ′

i) =
ui. In particular the letter a is inner.

N accepts val(Xn) if and only if N ′ accepts val(X ′
n). If N is a DFA, so is N ′.
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Algorithm 4 OutToIn(a), which changes an outer letter a to an inner letter.
1: for i = 1 . . n do
2: let the production for Xi be Xi → αi

3: let a`i , ari be the the explicit a-prefix and a-suffix of αi

4: remove prefix a`i and suffix ari from αi

5: replace appearance of Xi in rules’ bodies by a`j Xja
rj

6: if val(Xi) = ε then remove Xi from rules’ bodies
7: if there is a nonterminal transition δN (p, Xi, q) in N then
8: remove transition δN (p, Xi, q)
9: if val(Xi) 6= ε then

10: create new states p1, q1 in N ,
11: set transitions: δN (p, a`i , p1), δN (p1, Xi, q1), δN (q1, a

ri , q)
12: else create transition δN (p, a`i , q)

Since after OutToIn a is no longer an outer letter, we may compress its maximal blocks
using BlockComp. Some small twitches are needed to accommodate the a-succinct form of G

and the fact that N is a-relaxed: the non-trivial part of BlockComp was the application of
Lemma 2, which works for such large powers of a in npolytime, see Lemma 2. Other actions
of BlockComp generalise in a simple way.

I Lemma 9. BlockComp can be extended, so that it applies to instances satisfying (SLP
1)–(SLP 2) with G in the a-succinct form and a-relaxed-(Aut 1)–(Aut 2). The output
satisfies (SLP 1)–(Aut 2) and the claim of Lemma 7 applies to such an extension.

4.3.2 Crossing pair compression

By Lemma 9 all letters a` are inner. However, a pair of the form a`b can still be crossing
and this can happen only when b is a left-outer letter. We try to fix it by ensuring that
such a b is not a left-outer letter. To do so, we ‘pop’ one letter from the beginning of each
nonterminal (that is, all left outer letters): let val(Xi) = bw for b ∈ Σ, we modify G so that
val(X ′

i) = w. Clearly, after such operations there are some (perhaps other) left-outer letters
in G. Still, we show that none a`b is crossing.

Popping letters is performed similarly to the removal of the a-prefix, i.e. in a bottom-up
fashion, starting from X1: when considering a rule Xi → α, we remove the first letter
from α, say b, and replace Xi by bXi in all rules’ bodies. It is easy to modify the NFA
N accordingly: when there is a transition δN (p, Xi, q), we change it into a chain of two
transitions: δN ′(p, b, p1) and δN ′(p1, X

′
i, q). The whole operation is not performed on Xn,

as the letter $ is not going to be compressed anyway. This description is formalised in
Algorithm 5.

I Lemma 10. Pop runs in time polytime and preserves (SLP 1)–(Aut 2). Let val(Xi) = bu,
where b ∈ Σ, then val(X ′

i) = u for i < n and val(X ′
n) = val(Xn). After running Pop, pairs

of the form a`b appearing in val(Xn) are non-crossing.
N ′ accepts val(X ′

n) if and only if N accepts val(Xn). If N is deterministic, so is N ′.

Now, it is enough to apply the pair compression for non-crossing pairs to each pair of the
form a`b. For convenience, we write the whole procedure for pair compression for crossing
pairs in Algorithm 6.
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Algorithm 5 Pop, pops the first letter from each nonterminal
1: for i← 1 . . n− 1 do . Popping letters
2: let Xi → α and b be the first letter of α

3: remove first letter (b) from α

4: replace each Xi in rules’ bodies by bXi,
5: if α = ε then remove Xi from rules’ bodies
6: if there is a transition δN (p, Xi, q) in N then . NFA modification
7: remove transition δN (p, Xi, q)
8: if α 6= ε then
9: create new state p1 in N , set transitions: δN (p, b, p1), δN (p1, Xi, q)

10: else set transition δN (p, b, q)

Algorithm 6 CrPairComp(a), which compresses crossing pairs a`b

1: run Pop on each letter
2: for each a` do
3: for each a`b appearing in val(Xn) do
4: run PairComp(a`b, c)

I Lemma 11. CrPairComp runs in polytime and preserves (SLP 1)–(Aut 2). It implements
pair compression for a`b, in the sense that val(X ′

i) = PCa`b→c(val(Xi)) for each Xi.
N ′ accepts val(X ′

n) if and only if N accepts val(Xn). If N is deterministic, so is N ′.

4.4 Running time

Since the running time of each algorithm is npolytime, it is enough to show that the size of Σ,
G and N are always polynomial in n (recall that n is unchanged throughout Algorithm 1).

I Lemma 12. During Algorithm 1, the sizes of Σ, G, N are polynomial in n.

Using Lemmas 6–12 it is now possible to conclude that Algorithm 1 correctly solves
the FCMP for NFA, in nondeterministic polynomial (in n) time. The only source of non-
determinism is the one in Lemma 2, and so for DFA the corresponding problem can be solved
deterministically.
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