79 research outputs found

    BRAND – search for BSM physics at TeV scale by exploring transverse polarization of electrons emitted in neutron decay

    Get PDF
    Neutron and nuclear beta decay correlation coefficients are linearly sensitive to the exotic scalar and tensor interactions that are not included in the Standard Model (SM). The proposed experiment will measure simultaneously 11 neutron correlation coefficients (a, a, B, D, H, L, N, R, S, U, V) where 7 of them (H, L, N, R, S, U, V) depend on the transverse electron polarization – a quantity that vanishes for the SM weak interaction. The neutron decay correlation coefficients H, L, S, U, V were never attempted experimentally before. The expected ultimate sensitivity of the proposed experiment that currently takes off on the cold neutron beamline PF1B at the Institut Laue-Langevin, Grenoble, France, is comparable to that of the planned electron spectrum shape measurements in neutron and nuclear β decays but offers completely different systematics and additional sensitivity to imaginary parts of the scalar and tensor couplings

    Elements Discrimination in the Study of Super-Heavy Elements using an Ionization Chamber

    Full text link
    Dedicated ionization chamber was built and installed to measure the energy loss of very heavy nuclei at 2.7 MeV/u produced in fusion reactions in inverse kinematics (beam of 208Pb). After going through the ionization chamber, products of reactions on 12C, 18O targets are implanted in a Si detector. Their identification through their alpha decay chain is ambiguous when their half-life is short. After calibration with Pb and Th nuclei, the ionization chamber signal allowed us to resolve these ambiguities. In the search for rare super-heavy nuclei produced in fusion reactions in inverse or symmetric kinematics, such a chamber will provide direct information on the nuclear charge of each implanted nucleus.Comment: submitted to NIMA, 10 pages+4 figures, Latex, uses elsart.cls and grahpic

    Measurements of π\pi ^- production in 7^7Be + 9^9Be collisions at beam momenta from 19A to 150A GeV  ⁣/ ⁣cA\,\text{ GeV }\!/\!c in the NA61/SHINE experiment at the CERN SPS

    Get PDF
    The NA61/SHINE experiment at the CERN Super Proton Synchrotron (SPS) studies the onset of deconfinement in hadron matter by a scan of particle production in collisions of nuclei with various sizes at a set of energies covering the SPS energy range. This paper presents results on inclusive double-differential spectra, transverse momentum and rapidity distributions and mean multiplicities of π±\pi ^\pm , K±K^\pm , p and pˉ\bar{p} produced in the 20% most central7^7Be+9^9Be collisions at beam momenta of 19A, 30A, 40A, 75A and 150A GeV ⁣/ ⁣c{\mathrm{Ge} \mathrm{V}}\!/\!c. The energy dependence of the K±K^\pm /π±\pi ^\pm ratios as well as of inverse slope parameters of the K±K^\pm transverse mass distributions are close to those found in inelastic p+p reactions. The new results are compared to the world data on p+p and Pb+Pb collisions as well as to predictions of the Epos, Urqmd, Ampt, Phsd and Smash models

    Measurements of π±\pi ^\pm , K±K^\pm , p and pˉ\bar{p} spectra in 7^7Be+9^9Be collisions at beam momenta from 19A to 150A GeV ⁣/ ⁣c{\mathrm{Ge} \mathrm{V}}\!/\!c with the NA61/SHINE spectrometer at the CERN SPS

    Get PDF
    The NA61/SHINE experiment at the CERN Super Proton Synchrotron (SPS) studies the onset of deconfinement in hadron matter by a scan of particle production in collisions of nuclei with various sizes at a set of energies covering the SPS energy range. This paper presents results on inclusive double-differential spectra, transverse momentum and rapidity distributions and mean multiplicities of π ± π± , K ± K± , p and p ¯ p¯ produced in the 20% most central 7 7 Be+ 9 9 Be collisions at beam momenta of 19A, 30A, 40A, 75A and 150A GeV/c GeV/c . The energy dependence of the K ± K± /π ± π± ratios as well as of inverse slope parameters of the K ± K± transverse mass distributions are close to those found in inelastic p+p reactions. The new results are compared to the world data on p+p and Pb+Pb collisions as well as to predictions of the Epos, Urqmd, Ampt, Phsd and Smash models

    Erratum to: Measurements of π±\pi ^\pm , K±K^\pm , p and pˉ\bar{p} spectra in 7^7Be+9^9Be collisions at beam momenta from 19A to 150A GeV/c with the NA61/SHINE spectrometer at the CERN SPS – NA61/SHINE Collaboration

    Get PDF

    Measurements of multiplicity fluctuations of identified hadrons in inelastic proton–proton interactions at the CERN Super Proton Synchrotron: NA61/SHINE Collaboration

    Get PDF
    Measurements of multiplicity fluctuations of identified hadrons produced in inelastic p+p interactions at 31, 40, 80, and 158 GeV/c beam momentum are presented. Three different measures of multiplicity fluctuations are used: the scaled variance ω and strongly intensive measures Σ and Δ. These fluctuation measures involve second and first moments of joint multiplicity distributions. Data analysis is preformed using the Identity method which corrects for incomplete particle identification. Strongly intensive quantities are calculated in order to allow for a direct comparison to corresponding results on nucleus–nucleus collisions. The results for different hadron types are shown as a function of collision energy. A comparison with predictions of string-resonance Monte-Carlo models: EPOS, SMASH and VENUS, is also presented

    Chronic neuropsychiatric sequelae of SARS‐CoV‐2: Protocol and methods from the Alzheimer's Association Global Consortium

    Get PDF
    Introduction Coronavirus disease 2019 (COVID-19) has caused >3.5 million deaths worldwide and affected >160 million people. At least twice as many have been infected but remained asymptomatic or minimally symptomatic. COVID-19 includes central nervous system manifestations mediated by inflammation and cerebrovascular, anoxic, and/or viral neurotoxicity mechanisms. More than one third of patients with COVID-19 develop neurologic problems during the acute phase of the illness, including loss of sense of smell or taste, seizures, and stroke. Damage or functional changes to the brain may result in chronic sequelae. The risk of incident cognitive and neuropsychiatric complications appears independent from the severity of the original pulmonary illness. It behooves the scientific and medical community to attempt to understand the molecular and/or systemic factors linking COVID-19 to neurologic illness, both short and long term. Methods This article describes what is known so far in terms of links among COVID-19, the brain, neurological symptoms, and Alzheimer's disease (AD) and related dementias. We focus on risk factors and possible molecular, inflammatory, and viral mechanisms underlying neurological injury. We also provide a comprehensive description of the Alzheimer's Association Consortium on Chronic Neuropsychiatric Sequelae of SARS-CoV-2 infection (CNS SC2) harmonized methodology to address these questions using a worldwide network of researchers and institutions. Results Successful harmonization of designs and methods was achieved through a consensus process initially fragmented by specific interest groups (epidemiology, clinical assessments, cognitive evaluation, biomarkers, and neuroimaging). Conclusions from subcommittees were presented to the whole group and discussed extensively. Presently data collection is ongoing at 19 sites in 12 countries representing Asia, Africa, the Americas, and Europe. Discussion The Alzheimer's Association Global Consortium harmonized methodology is proposed as a model to study long-term neurocognitive sequelae of SARS-CoV-2 infection

    Measurements of π±\pi ^\pm , K±K^\pm , p and pˉ\bar{p} spectra in 7^7Be+9^9Be collisions at beam momenta from 19A to 150A GeV ⁣/ ⁣c{\mathrm{Ge} \mathrm{V}}\!/\!c with the NA61/SHINE spectrometer at the CERN SPS

    Get PDF
    The NA61/SHINE experiment at the CERN Super Proton Synchrotron (SPS) studies the onset of deconfinement in hadron matter by a scan of particle production in collisions of nuclei with various sizes at a set of energies covering the SPS energy range. This paper presents results on inclusive double-differential spectra, transverse momentum and rapidity distributions and mean multiplicities of π ± π± , K ± K± , p and p ¯ p¯ produced in the 20% most central 7 7 Be+ 9 9 Be collisions at beam momenta of 19A, 30A, 40A, 75A and 150A GeV/c GeV/c . The energy dependence of the K ± K± /π ± π± ratios as well as of inverse slope parameters of the K ± K± transverse mass distributions are close to those found in inelastic p+p reactions. The new results are compared to the world data on p+p and Pb+Pb collisions as well as to predictions of the Epos, Urqmd, Ampt, Phsd and Smash models
    corecore