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Abstract

Introduction: Coronavirus disease 2019 (COVID-19) has caused >3.5 million deaths

worldwide and affected>160million people. At least twice asmanyhavebeen infected

but remained asymptomatic or minimally symptomatic. COVID-19 includes central

nervous systemmanifestationsmediatedby inflammation and cerebrovascular, anoxic,

and/or viral neurotoxicity mechanisms. More than one third of patients with COVID-

19 develop neurologic problems during the acute phase of the illness, including loss

of sense of smell or taste, seizures, and stroke. Damage or functional changes to the

brain may result in chronic sequelae. The risk of incident cognitive and neuropsychi-

atric complications appears independent from the severity of the original pulmonary

illness. It behooves the scientific andmedical community to attempt to understand the

molecular and/or systemic factors linking COVID-19 to neurologic illness, both short

and long term.

Methods: This article describes what is known so far in terms of links among COVID-

19, the brain, neurological symptoms, and Alzheimer’s disease (AD) and related

dementias. We focus on risk factors and possible molecular, inflammatory, and viral

mechanisms underlying neurological injury.We also provide a comprehensive descrip-

tion of theAlzheimer’s Association ConsortiumonChronicNeuropsychiatric Sequelae

mailto:deerausquing@uthscsa.edu
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of SARS-CoV-2 infection (CNS SC2) harmonized methodology to address these

questions using a worldwide network of researchers and institutions.

Results: Successful harmonization of designs and methods was achieved through a

consensus process initially fragmented by specific interest groups (epidemiology, clin-

ical assessments, cognitive evaluation, biomarkers, and neuroimaging). Conclusions

from subcommittees were presented to the whole group and discussed extensively.

Presently data collection is ongoing at 19 sites in 12 countries representing Asia,

Africa, the Americas, and Europe.

Discussion: TheAlzheimer’s AssociationGlobal Consortium harmonizedmethodology

is proposed as a model to study long-term neurocognitive sequelae of SARS-CoV-2

infection.

KEYWORDS

cognitive impairment, dementia, neuropsychiatric sequelae, predictors, SARS-CoV-2

Key Points

∙ The following review describes what is known so far in terms of molecular and epi-

demiological links among COVID-19, the brain, neurological symptoms, and AD and

related dementias (ADRD)

∙ The primary objective of this large-scale collaboration is to clarify the pathogene-

sis of ADRD and to advance our understanding of the impact of a neurotropic virus

on the long-term risk of cognitive decline and other CNS sequelae. No available

evidence supports the notion that cognitive impairment after SARS-CoV-2 infec-

tion is a form of dementia (ADRD or otherwise). The longitudinal methodologies

espoused by the consortium are intended to provide data to answer this question

as clearly as possible controlling for possible confounders. Our specific hypothesis

is that SARS-CoV-2 triggers ADRD-like pathology following the extended olfactory

cortical network (EOCN) in older individuals with specific genetic susceptibility.

∙ The proposed harmonization strategies and flexible study designs offer the possibil-

ity to include large samples of under-represented racial and ethnic groups, creating

a rich set of harmonized cohorts for future studies of the pathophysiology, determi-

nants, long-term consequences, and trends in cognitive aging, ADRD, and vascular

disease.

∙ We provide a framework for current and future studies to be carried out within the

Consortium. andoffers a “greenpaper” to the research communitywith averybroad,

global base of support, on tools suitable for low- andmiddle-income countries aimed

to compare and combine future longitudinal data on the topic.

∙ The Consortium proposes a combination of design and statistical methods as a

means of approaching causal inference of the COVID-19 neuropsychiatric sequelae.

Weexpect that deep phenotyping of neuropsychiatric sequelaemay provide a series

of candidate syndromeswith phenomenological and biological characterization that

can be further explored. By generating high-quality harmonized data across siteswe

aim to capture both descriptive and, where possible, causal associations.
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1 INTRODUCTION

1.1 SARS-CoV-2 and the brain

Coronavirus disease 2019 (COVID-19) has caused >5.6 million deaths

worldwide and affected >450 million people. At least twice as many

have been infected but remained asymptomatic or minimally symp-

tomatic. Though initially understood as a respiratory illness, COVID-19

includes central nervous system (CNS) manifestations mediated by

inflammation, and cerebrovascular, anoxic, and/or viral neurotoxicity

mechanisms.1 More than one third of patients with COVID-19 expe-

rience neurologic complications during the acute illness, including loss

of sense of smell or taste, seizures, and stroke. Following the acute ill-

ness, the risk of incident neurological or psychiatric disorder remains

elevated for at least 6 months.2–5 Mounting evidence indicates that

the risk of late cognitive and neuropsychiatric complications may be

independent of the severity of the original pulmonary and systemic

illness.6–16

One possible account of the neurological complication of COVID-

19 is that the causative virus, severe acute respiratory syndrome

coronavirus disease 2 (SARS-CoV-2), may directly invade the brain.

Both SARS-CoV-2 and SARS-CoV use human angiotensin-converting

enzyme2 (ACE2)17 receptors as themolecularmechanism for invading

cells. These receptors are richly expressed in the brain and olfactory

bulb.18,19 It is reasonable then to consider whether SARS-CoV-2’s

effects on the olfactory bulb (resulting in anosmia) may extend into

the olfactory cortical network.20–27 Experimental work in non-human

primates28 and rodents26 has provided evidence in support of this

mechanism. Neuroimaging in sub-acute COVID-19 patients also pro-

vided evidence of regional involvement of the olfactory bulb and its

first- and second-order projections.29–34 We note too that involve-

mentof theolfactory cortical network inearlyAlzheimer’s disease (AD)

is well established, and olfactory dysfunction is a strong clinical cor-

relate of mild cognitive impairment (MCI) in AD and other forms of

dementia.35–37

Other possible (or additive) pathological mechanisms that may

underlie chronic neurological consequences of SARS-CoV-2 infec-

tion include persistent cytokine-mediated inflammation, antibody-

mediated autoimmunity, and cerebrovascular pathology. These all

contribute to the acute neurological complications of COVID-19 and

may act as predisposing factors or ongoing insults for chronic or

progressive neurological impairment.

Given these concerning findings, it behooves the scientific andmedi-

cal community to attempt tounderstand themolecular and/or systemic

factors linking COVID-19 to neurologic illness, both short and long

term. The following review describes what is known so far in terms

of links among COVID-19, the brain, neurological symptoms, and AD

and related dementias (ADRD), with a focus on risk factors and pos-

sible molecular, inflammatory, and viral pathways. We conclude with

a description of the Alzheimer’s Association Consortium on Chronic

Neuropsychiatric Sequelae of SARS-CoV-2 infection (CNS SC2), which

seeks to address these and other questions through an international

consortium.

1.2 Evidence of lingering cognitive impairment
after SARS-CoV-2 infection

There is significant evidence supporting a connection between cog-

nitive impairment and coronavirus infection. After the coronavirus

pandemics of 2002 and 2012, 20% of recovered individuals reported

memory impairment.38 An early report during the ongoing pandemic

found that one third of individuals with COVID-19 had dysexecu-

tive syndrome at the time of hospital discharge.38 Impaired cognitive

abilities lead to poor occupational and functional outcomes, but the

extent to which cognitive deficits contribute to long-term disability

in COVID-19 survivors remains unknown. Cognitive impairment can

precipitate or exacerbate existing mental health disorders, which in

turn worsen cognitive dysfunction.39,40 In a recent meta-analysis and

systematic review, the most common post-COVID-19 neurological

symptoms were headache, nausea, vomiting, muscular pain, anosmia,

and ageusia.12 The same study reported that SARS-CoV-2 infection

may result in cognitive impairment even after mild or asymptomatic

infection.12–15 Concerningly, even asymptomatic COVID-19 individu-

als had lowered scores in visuoperception, naming, and fluency; those

older than 60 years old fared the worst16 whereas young, previ-

ously healthy individuals recovered within 4 months after infection.41

In a sample of COVID-19 patients discharged from critical care to

rehabilitation, 80% had working memory, set-shifting, attention, and

processing speed deficits.42 In two independent studies of patients

discharged to home, clinically significant cognitive impairment per-

sisted in 60% to 70% of patients 3 to 4 months after discharge,

with verbal learning, psychomotor speed, and executive function most

affected.11,13 Finally, in two independent studies of patients assessed 6

months after hospital admission formild tomoderateCOVID-19, olfac-

tory dysfunction and cognitive impairment were linearly predicted

by older age but not disease severity.43,44 Thus, there is a connec-

tion between COVID-19 and lingering cognitive impairment. The data

also suggest that even asymptomatic infections can result in cognitive

dysfunction.

1.3 SARS-CoV-2 and the risk of early AD

The idea that infectious agents may contribute to the risk of AD was

recently reaffirmed.45–50 A meta-analysis of >100,000 participants

found that several viruses associated with a higher risk of AD,51 and

bacteria have also been implicated.47,51 The presence of immunity

to herpes simplex virus 1 (HSV-1), the best studied pathogen, corre-

lates with greater cognitive impairment52 and increased neuropatho-

logical biomarkers of AD in humans.53,54 In mice models, HSV-1

infection increases the expression of amyloid precursor protein,55 trig-

gers the accumulation of amyloid beta (Aβ) and hyperphosphorylated

tau,54,56,57 and impairs adult hippocampal neurogenesis.52,56–59

Of note, susceptibility to COVID-19 is driven in part by risk fac-

tors that overlap with those of ADRD, including older age60,61 and

apolipoprotein E (APOE) ε4 status.62–64 In regard to the latter, in

vitro experiments show that human neurons derived from induced
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pluripotent stem cells (iPSCs) are more susceptible to SARS-CoV-2

infection and neurodegenerative changes if they carry APOE ε4/ε4
genotypes.65 Given that ethnicminorities in both theUnitedStates and

UK,66,67 as well as in individuals globally who have blood type A,67,68

are at higher risk of COVID-19 complications and death, it appears

that ancestry interacts (whether directly or through health disparities)

with environmental factors to contribute to SARS-CoV-2–related dis-

ease susceptibility, and therefore potentially also COVID-19–related

ADRD risk. In short, after the acute pandemic recedes, its sequelae are

likely to impact dementia research for years to come.1 The possibility

that such sequelaemaydeepen existing health inequities heightens the

need to focus future research on the long-term impact of SARS-CoV-2

infections onminoritized and unrepresented populations.

1.4 The complexity of AD causation

The total numberof people livingwithdementiaworldwideapproaches

50million and is projected to surpass 130million by 2050,69 themajor-

ity of whom have AD. Despite massive investments, no effective treat-

ments are available.70–73 Slow progress in understanding and treating

AD may be due in large part to disease heterogeneity and the mul-

tiplicity of causal contributions.69,74 However, dementia syndromes

continue to be refined with contributions from neuropathology, lon-

gitudinal clinical assessments, advanced neuroimaging, and molecu-

lar markers.69,73,75 The emerging view is that dementias comprise

overlapping phenotypes linked to multiple biological substrates.76,77

Studies of causation reveal contributions from genetic variations,

lifestyle choices, and environmental risk factors, including infections,

plus highlighted interactions among them.69,74,78,79

Identification of causal genetic variation was expected to guide

development of disease-modifying treatments for dementia, yet at

the time of this submission, the majority of heritability remains unex-

plained despite large lists of disease-associated genetic variants.69

Risk prediction improves when large numbers of genetic variants

are combined into polygenic risk scores (PRS), but these successes

are largely limited to populations of European ancestry.80–82 When

applied across ancestry groups, or even across different segments of

the same ancestry, PRS performance deteriorates.83 Therefore, the

genetics of under-represented minorities in genetic studies of ADRD

represent a severe knowledge gap that increasingly may result in

greater health disparities as precisionmedicine becomes the prevalent

paradigm.84

It is our firm belief that untangling the complexity of ADRD will

require novel, data-driven strategies that take advantage of complex

datasets (neuropsychological, environmental, neuroimaging, genomics,

blood-based biomarkers),85–87 deep learning and explanatory artificial

intelligence,88 and the inclusion of ancestral populations89 to uncover

naturally occurring data structures or architectures. Such an approach

is discovery based and agnostic, allowing diagnostic heterogeneity and

overlap to assist in the uncovering of specific biological mechanisms. A

promising environmental factor that could be used in such an effort is

SARS—CoV-2 exposure,18,20,28,90–93

1.5 Epidemiological factors predictive of
cognitive impairment

Though sedentary lifestyle, smoking, andobesity (butnotheavyalcohol

consumption) are related to increased rates of COVID-19 hospi-

tal admissions,94 specific risks for transient or persistent cognitive

impairment after SARS-CoV-2 infection have not yet been identified.

Diabetesmellitus increases the risk for dementia and other severe out-

comes after SARS-CoV-2 infection.40 Diabetes is highly prevalent in

certain demographics, such as Blacks and Latinos, and these groups

also appear to be at higher risk for the neurological complications of

COVID-19.95 Disparities in COVID-19 hospitalizations and mortality

according to ethnicity remain even after correcting for neighborhood,

household crowding, smoking, body size, diabetes, andmental illness.96

Age also appears to be a factor, as COVID-19 patients who are

≥65 years of age have more severe systemic disease and higher rates

of neurologic complications. It is already well known that COVID-

19 morbidity and mortality are very high in the elderly population,

with 6 to 930 times higher likelihood of death compared to younger

cohorts. The highest risks are among the most elderly (≥85 years)

and older persons with medical comorbidities such as hypertension,

diabetes, heart disease, and underlying respiratory illness.60 Elderly

patients with preexisting neurologic diseases are both more suscepti-

ble to severe COVID-19 infection and show higher rates of mortality

than their neurologically healthy counterparts.60,61 Most intriguingly,

in a very large study of the UK Biobank, the APOE ε4/ε4 genotype was

associated with COVID-19 test positivity at genome-wide significance

in individuals of European ancestry, and the APOE ε4/ε4 genotype was

also associated with a 4-fold increase in mortality after testing pos-

itive for COVID-19.33 This finding was replicated in an independent

community sample in Spain.64

1.6 Clinical factors predictive of cognitive
impairment

Variations in host immune responses to SARS-CoV-2 infection may

partially explain age and sex differences in disease severity,97,98 and

possibly also the frequency and severity of chronic sequelae.1 Lev-

els of inflammatory markers, such as C-reactive protein,99 ferritin,100

and D-dimer101 were associated with elevated risk of poor out-

comes of COVID-19 in a dose-dependent manner, and a marker of

heart failure was associated with increased mortality in COVID-19

pneumonia.102 Delirium in hospitalized COVID-19 patients also corre-

lates with elevated inflammatory markers.10 However, in community

cases, COVID-induced impairments in short-term memory, attention,

and concentration did not correlate with hospitalization, treatment,

viremia, or acute inflammation.41 Likewise, in patients discharged from

critical care to rehabilitation, persistent executive dysfunction was not

associatedwithmechanical ventilationor preexisting cardiovascular or

metabolic disease.13 On theotherhand, in a small sampleof community

cases with mild symptoms, hyposmia was correlated with cogni-

tive impairment.103 Although younger patients (<60) may frequently
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complain of cognitive dysfunction, objective changes in performance

are mild or absent in this group. The best predictors of subjective

cognitive impairment in younger adults include psychiatric complaints

and physical symptoms (headache, diarrhea), with the only common

risk factor across age groups being olfactory dysfunction.6,14,103,104

Taken together, these findings hint at a role for inflammation in dis-

ease severity generally, but not necessarily for cognitive sequelae, and

reinforce concerns about olfactory involvement in relation to cognitive

impairment.

There are overlapping risk factors between COVID-19–induced

cognitive impairment and progressive cognitive decline and AD. Both

ADRD and COVID-19 are age-dependent disorders, becoming much

more frequent and severe with advancing age.47 Morbidity and mor-

tality of COVID-19 are also elevated in AD, and individuals with AD

are more likely to develop COVID-19 and to die as a consequence of

the illness.47 Other risk factors potentially linking SARS-CoV-2 infec-

tion with progressive cognitive decline and ADRD include molecular

pathway abnormalities, clinical profiles, and partially overlapping neu-

roimaging signatures. The ACE2 receptor acts as the ligand for the

spike protein of SARS-CoV-2 mediating cell entry.105 ACE2 expres-

sion declines with age, resulting in a pro-inflammatory state that

may explain the increased severity and comorbid diabetic and hyper-

tensive complications observed in older adults.1 SARS-CoV-2 specif-

ically infects endothelial cells expressing ACE2, potentially leading

to the observed deterioration of vascular architecture.1 This could

lead to brain hypoperfusion and accelerate cognitive decline in the

elderly.1,90,40 As a result of ACE2 downregulation, SARS-CoV-2 infec-

tion in older adults induces aggressive secretion of pro-inflammatory

cytokines.1 Indeed, COVID-19 results in high levels of proinflamma-

tory cytokines, acute respiratory distress, and hypoxia, each of which

may contribute to cognitive decline in healthy and in already pre-

disposed individuals.1,40,106,107 Pro-inflammatory cytokines increase

oxidative stress, resulting in downregulation of excitatory amino acid

transporters and elevated glutamate levels, which may, in turn, cause

excitotoxicity. This pathway is already postulated to play a role in sev-

eral neurodegenerative diseases, including ADRD. The olfactory bulb

has one of the highest levels of ACE2 expression in the brain, and direct

viral entry into neurons may create an additional cytotoxic insult.107

Even a transient presence of the virus in the olfactory bulb may

precipitate an underlying proteinopathy associated with age-related

neurodegenerative disorders.1,108–111 The neuroinvasive potential of

SARS-CoV-2 may result in senescence of several different CNS cell

types, including oligodendrocytes, astrocytes, and neural stem cells

that can differentiate into neurons that integrate into the granule

layer.1,112 Viral aggravation of underlying AD neuropathology has the

potential to hasten the onset of, or further deteriorate, motor and

cognitive deficits.20,40,112

In silico network-based relationships have been reported as path-

ways and processes that are implicated in ADRD, and they have been

confirmed in transcription studies.113 In addition, abnormal expres-

sion of AD biomarkers was found in the cerebrospinal fluid and

blood of patients with COVID-19.113 As already mentioned, APOE

ε4, a strong genetic risk factor for ADRD, has been associated with

increased risk for severe COVID-19. Notably, the neurotropism and

neurotoxicity of SARS-CoV-2 in human iPSC-derived neuron-astrocyte

co-cultures and brain organoids were found to be much higher in

APOE ε4/ε4 neurons and astrocytes.114 Systems biology approaches

have predicted the interaction between prohibitins, a class of mito-

chondrial proteins, and SARS-CoV-2.115 The same prohibitins have

been shown to mediate altered mitochondrial bioenergetics in olfac-

tory bulb neurons donated fromAD patients,116 possibly representing

a common underlying molecular mechanism. A broader picture of

overlapping mechanisms in the olfactory bulb includes equivocal dis-

ruption of mitogen-activated protein kinase cascades, which has been

detected specifically in the olfactory bulb in AD116 and is a hall-

mark of SARS-CoV-2 infection.117 Furthermore, cases of persistent

anosmia and parosmia may in fact reveal pre-existing neurogenesis

defects, unmasked by SARS-CoV-2 infection and providing the niche

for the onset of neurodegenerative disease.21 Along with neuropatho-

logical evidence of SARS-CoV-2’s intraneuronal entry, its neuroin-

vasive potential may be defined by immune fitness on the cellular

level.

Neuroimaging studies also provide possible links between COVID-

19 and brain changes. A defined profile of brain positron emission

tomography hypometabolism in long COVID patients with biologically

confirmedSARS-CoV-2 andpersistentmemory impairmentwas shown

more than 3 weeks after the initial infection symptoms. Alterations

involved the olfactory gyrus and connected limbic/paralimbic regions,

extending to the brainstem and cerebellum, and were associated with

symptoms.118 In older adults (average age 66), a significant reduc-

tion of frontoparietal and temporal glucose metabolism was related to

cognitive impairment.8 These reductions persistedwith some improve-

ment 6 months after COVID-19 diagnosis.119 Conversely, in younger

individuals, persistent impairment in executive function, attention, and

less frequently in memory are far more common in women and associ-

atedwithhypometabolism in the cingulate cortex, precuneus, andbrain

stem.120,121,122

The reviewed literature does not, however, prove a link between

SARS-CoV-2 infection and ADRD. Most specifically, no available evi-

dence supports the notion that cognitive impairment after SARS-CoV-

2 infection is a formof dementia (ADRDor otherwise), because no data

regarding the progression of neuropathological disease are available.

Even thoughCOVID-19 has significant, attendant lethality in the acute

phase, death is not a result of an extended, progressive neuropatho-

logical disease. Therefore, until and unless a clear progressive pattern

of disease is demonstrated in at least some individuals as a direct

sequela of infection with SARS-CoV-2, this will remain an open ques-

tion. The longitudinal methodologies espoused by the consortium are

intended to provide data to answer it as clearly as possible controlling

for possible confounders.

1.7 The Alzheimer’s Association Consortium on
Chronic Neuropsychiatric Sequelae of SARS-CoV-2
infection (CNS SC2)

Collectively, the information reviewed here provides important clues

and evidence to support a hypothesis that cognitive impairment after
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SARS-CoV-2 infection in older adults may be progressive in nature and

associated with epidemiological risk factors (including genetic ances-

try), biomarkers, and neurosignatures that are overlapping with, or

identical to, those of ADRD. To test this hypothesis, the Consortium

has embarked on a large-scale, international collaboration to provide

a harmonized set of tools and protocols to probe the association of

SARS-CoV-2 infectionwithneurological, psychiatric, and cognitiveout-

comes in a variety of settings covering ethnically and geographically

diverse populations. The underlying hypothesis is that the COVID-19

pandemic will increase rates of cognitive decline and dementia in older

adults worldwide, presenting a very unwelcome but unique opportu-

nity to understand interactions between the genomic risk ofADRDand

relevant environmental factors, including viral exposure to SARS-CoV-

2.18,20,90–93,123 The primary objective of this large-scale collaboration

is to clarify the pathogenesis of ADRD and to advance our under-

standing of the impact of a neurotropic virus on the long-term risk of

cognitive decline and other CNS sequelae. The proposed harmoniza-

tion strategies and flexible study designs offer the possibility to include

large samples of under-represented racial and ethnic groups, creating

a rich set of harmonized cohorts for future studies of the pathophysi-

ology, determinants, long-term consequences, and trends in cognitive

aging, ADRD, and vascular disease. Thus, the present proposal pro-

vides a framework for current and future studies to be carried out

within theConsortium. and offers a “green paper” to the research com-

munity with a very broad, global base of support, on tools suitable

for low- and middle-income countries aimed to compare and com-

bine future longitudinal data on the topic.Our specific hypothesis is that

SARS-CoV-2 triggers ADRD-like pathology following the extended olfactory

cortical network (EOCN) in older individuals with specific genetic suscepti-

bility. Of specific interest is the consequence that cognitive complaints

in younger adult individuals may be of a different nature than those

observed in older adults and obey different molecular mechanisms,

clinical course, and outcomes. The proposed methods will allow us to

address this and other questions.

2 METHODS

2.1 Enrollment countries

Member countries include (see Figure 1): Argentina, Australia, Aus-

tria, Bolivia, Brazil, Canada, Chile, China, Colombia, Cuba, Denmark,

Dominican Republic, Ethiopia, Finland, France, Germany, Greece, Haiti,

Honduras, Iceland, India, Israel, Kenya, Mexico, the Netherlands, Nige-

ria, Peru, the Philippines, Qatar, South Africa, Spain, Sweden, Tanzania,

Thailand, Uganda and theUK (England,Wales, and Scotland). Given the

variety of countries involved, cohorts will allow inclusion of all major

genetic backgrounds found in low, lower–middle, upper–middle, and

high-income countries. Data collection is already ongoing using com-

ponents of the presented methodology in Argentina, Canada, Greece,

India, Israel, and the United States and will commence soon in several

other of themember countries.

2.2 Enrollment criteria

New cohorts will recruit participants of age≥50 years, with the cut-off

being different in some locations. About half of COVID-10 hospitalized

patients are >55 years, making them a good population for investi-

gating interactions between viral infections and the risk of cognitive

decline and dementia.1,18 Both males and females will be recruited.

Existing cohorts will not include new recruitment for the purpose of

harmonizationwith theConsortium, but insteadwill collect aminimum

harmonized data set (see below).

2.3 Recruitment and sampling procedures

The principal objective of the CNS-SC2 protocol is to provide suffi-

cient flexibility of recruitment methods and data collection to member

countries to maximize sampling opportunities, while at the same

time harmonizing procedures and methods sufficiently to allow for

cross-site comparisons, meta-analytic approaches, and other forms of

appropriate data collation. Thus, participant recruitment processes are

permitted to vary as described below, depending on the site and study

sample. Screening questionnaires will be used to determine eligibility

and recruit participants via either telephonic and video interviews or

during clinic and hospital visits. When possible, one informant (family

member or close friend) will be enrolled per participant. A description

of ongoing recruitment efforts is provided in Table 1. We plan to use

several complementary recruitment frameworks:

1. Hospital-based samples: We propose to derive these from sam-

pling frames constructed using current lists of hospital admissions

for COVID-19 in academic centers. Participating academic groups

with immediate access to hospital admissions data for patients

who tested positive for COVID-19 allow recruitment of persons

at relatively high risk of neurological complications, given that

severity of infection warranted hospitalization. That is, while the

relationshipbetweenacute severity andneurological complications

does not hold as well for individuals with less severe disease, it

is well established for cases that required hospitalization.5 Such

patients will be contacted and offered enrollment in a cohort with

a minimal longitudinal follow-up of between 12 and 24 months of

the initial assessment. Representativeness of the sample will be

determined by comparing characteristics of the full list of hospital

admissions against those who enroll. Wherever possible, individ-

uals discharged from the hospital but negative for COVID-19

infection (and matched for age range) will be recruited to repre-

sent the background risk of cognitive decline and neuropsychiatric

pathology and act as a control group. For instance, the ongoing

recruitment in Greece uses patients with chronic obstructive pul-

monary disease admitted with complications as the comparison

group. Further, there are extended comparison groups at some

sites, such as a cohort of EarlyOnset Alzheimer’sDiseasewith deep

clinical and biogenetic phenotyping in England (NCT04992975;
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F IGURE 1 Map of countries of origin of Consortiummembers

NCT03861884). Most ongoing data collection (for instance in

Canada, Greece, England, South Africa, and in San Antonio, Texas,

USA) follow this model.

2. Population registry samples: Wherever they are available, we will

establish new cohorts by sampling from existing national, regional,

or local (e.g., city) population registries that include SARS-CoV-2

testing data (regardless of hospitalization or the result of the test-

ing) as part of the pandemic response. Such samples will include a

wide range of acute COVID-19 outcomes, including respiratory or

general symptoms severe enough to warrant hospitalization (with

and without intensive care admission), mild symptoms (managed in

ambulatory settings), asymptomatic positive individuals, and those

who tested negative. The latter will act as controls for infected

participants. From these lists, we will randomly invite participants

stratified by testing status and regardless of symptom severity. This

approach will make it possible to estimate population-level effect

sizes, including error estimates that take account of, and are cor-

rected for, each sampling fraction and the numbers successfully

obtained, leading to greater external validity. Cohorts collected

with this methodology are being recruited in Argentina and the

United States (Laredo, Texas). To trim the samples, scores from

semi-structured interviews may be used to determine the clinical

severity of the COVID-19 and to populate the stratified sample

from the cohort.

3. Pre-existing population-based cohort samples of aging individuals:

Wherever there are surviving participants of ongoing, longitudi-

nal, community-based cohort studies already collecting biosamples,

and cognitive, behavioral, and neuroimaging data in populations

that fit our age criteria, we will attempt to include them in CNS-

SC2. COVID-19 status will be determined using both standardized

case report forms (CRFs) developed by the NeuroCOVID Forum

of the World Health Organization (WHO) and via antibody titer

for SARS-CoV-2 exposure. Participants in these cohorts already

have pre-existing extensive baseline phenotyping, and in many

cases have been extensively genotyped as well, allowing direct

assessment of predictors of the short- and long-term effects of

exposure to COVID-19 infection and complications from SARS-

CoV-2. Because follow-up data collection in surviving participants

of such historic samples are less likely to be representative of

the original populations they were sampled from, analyses will

check for lost to follow-up (non-participation) bias. However, as

with comparisons with pre-COVID-19 samples (below) that are

unlikely to have adopted the same measurement methods used in

this protocol, synthetic data analysis methods will be required to

combine findings from newly enrolled samples (e.g., recruitment

frameworks 1 and 2 above). In this case, cohort participants who

remained free of infection during the pandemic will act as ideal

controls, because they have extensive pre-pandemic phenotyping.

Pre-existing cohorts of these characteristics are available in, for

instance, Australia, Denmark, England, India, and New York City in

the United States, among several others.

4. Population-based pre and post COVID-19 multiple, cross-

sectionally representative (probabilistic) samples:Where available,

these may also be included to compare pre and post COVID-19

individuals. Such designs provide extensive pre COVID-19 popu-

lation data for comparison with a new sample to be collected post

COVID-19 in the same individuals. Whereas participant data in the

pre COVID-19 samples can be presumed to beCOVID-19 negative,
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TABLE 1 Current active cohorts in the Consortium

Argentina Ministry of Health – Jujuy Dr. Agustin Yecora ISAVRAD 865

Australia Centre for Healthy Brain Ageing

(CHeBA) – University of New South

Wales

Dr. Katya Numbers MAS 173

Australia Centre for Healthy Ageing Prof. Hamid Sohrabi Western AustraliaMemory

Study

Projectd: 200

Cuba Universidad de CienciasMedicas de la

Habana

Prof. Antonio Caballero Longitudinal study of

convalescent COVID-19

patients

∼400

France Clinique de laMémoire. Université de

Paris

Prof. Jacques Hugon Longitudinal follow up

post-COVID-19with PET

imaging

100

Greece University of Thessaly Dr. George Vavougios,

Prof. Konstantinos I.

Gourgoulianis

COVALENT Tier 1 and Tier

2 Cohorts

250 and 200,

respectively

India Iqra International Hospital and

Research Center – Calicut, India

Dr. Uvais Arakkal CNS SARS CoV-2:

Prospective Cohort

Pilot initiated

India Center for Brain Research, IISc –

Bangalore, India

Dr. Vijay Ravindranath,

Jonas Sundarakumar

SANSCOG and TLSA

studies

3170 and 583,

respectively

Israel University of Haifa Dr. GalitWeinstein Pilot initiated

South Africa University of Cape Town Prof. Dan Stein Collaborative study ∼200

UK University of Leicester Dr. Elizabetta

Mukaetova-Ladinska

UK University of Nottingham Dr. AkramHosseini 7TMRI COVID Project

USA University ofMississippi Prof. ThomasMosley Member of ARIC 5046

USA Pacific Neuroscience Institute Dr. DavidMerrill, Dr.

Stella Panos

Pacific Brain Health Center

Clinic

Pilot initiated

USA UTHealth San Antonio, University of

Pittsburgh, HoustonMethodist,

Massachusetts General Hospital

Drs. Sudha Seshadri,

Gabriel de Erausquin

7TMRI COVID Project ≈240

USA UTHealth San Antonio/Laredo Drs. Sudha Seshadri,

Gabriel de Erausquin

ISAVRAD 250

USA Albert EinsteinMedical College Mindy Katz Bronx Study of Aging 250

Venezuela University of Zulia, University of Texas

Rio Grande Valley

Drs. GladysMaestre,

Carlos A. Chavez

Maracaibo Aging Study Pilot initiated

Abbreviations: ARIC, Atherosclerosis Risk in Communities; COVALENT, A COVID-19 Clinical, Research and Phenotyping Network; COVID, coronavirus dis-

ease; ISAVRAD, Interaction between SARS-CoV-2 Infection andAncestral genomicVariations in theRisk of Alzheimer’sDisease andRelatedDisorders;MAS,

Memory and Aging Studies; MRI, magnetic resonance imaging; PET, positron emission tomography; SANSCOG, Srinivaspura Aging, Neuro Senescence and

Cognition; TLSA, Tata Longitudinal Study on Aging; UT, University of Texas.

it will be necessary in the post COVID-19 samples to determine

their case status by questionnaire or COVID-19 test results. Such a

design will be able to disaggregate the effect of viral infection from

the social, economic, and psychological effects of living through the

pandemic period. Samples obtained with this methodology will be

available in England and Pakistan.

2.4 Identification of SARS-CoV-2 exposure

COVID-19 positivity will be categorized as definite, probable, and

possible based on testing, documentation, and symptomatology (see

Table 2). However, the only criterion for inclusion in prospective

cohorts will be a positive result on either a polymerase chain reac-

tion (PCR) test or, where available, a positive antigen test at the time

of detection. A positive PCR occurring within 3 months of enrollment

will be exclusionary, as it could indicate current infection. Because

the pandemic is still ongoing, seroconversion of participants in the

uninfected comparison group is a potentially serious concern. Sero-

conversion could occur after the documented initial negative PCR but

before the initial assessment or after the initial assessment but prior

to the 24-month follow-up visit. The primary method for confirm-

ing seronegativity will be lack of detection of circulating antibodies

against SARS-CoV-2 nucleocapside protein.124 We will also strive to

collect clinical history documentation and monitoring of the registry

for repeated PCR tests documenting active infection at a later time.
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TABLE 2 Case definitions

Definite case definition variants

Positive infection test (PCR or rapid test)

Positive infection test with a later positive antibody test

Positive infection test with at least 2 core symptomsa

Positive infection test with at least 1 core symptom ˆ and 2

supportive symptomsb

Positive infection test, core symptoms, and hospitalization as an

index of severity

Probable case definition variants

Antibody test positive on two occasions (without vaccination)

Positive antibody test (without vaccination) with at least 2 core

symptomsa or 1 core+ 2 supportive symptoms

Negative infection test with at least 2 core symptomsa or 1 core

+ 2 supportive symptoms and typical chest CT

Possible case definitions (e.g., drawn from survey

questionnaires or interview findings)

Single core symptoms

Self-reportedwithout laboratory testing confirmation

Positive antibody test on just one occasion (without vaccination)

aCore symptoms: fever, chills, cough, sore throat, anosmia, dyspnea,

hypoxia, muscle pain, fatigue, alteredmental status, or delirium.
bSupportive symptoms: diarrhea, headache, skin rash.

Abbreviations: CT, computed tomography; PCR, polymerase chain reaction.

Even with careful monitoring of both, we may fail to identify asymp-

tomatic infections in some individuals. However, this limitation may

improve the robustness of any findings of cognitive decline in the

targeted population (i.e., participants with documented positive infec-

tion), because undetected asymptomatic infections would have the

effect of increasing cognitive decline in the comparison group, reducing

any potential group differences.

2.5 Stratification of COVID-19 symptom severity

For symptom severity, baseline evaluations of all enrollees will include

(as part of the minimum data set for all cohorts) detailed CRFs for

COVID-19 developed by the WHO’s NeuroCOVID-19 Work Group

(several Consortium investigators including the lead author are mem-

bers of this group). The protocol proposed in this article has been

presented and discussed at several stages of development to theWHO

Work Group, whose members have provided feedback and techni-

cal advice. The WHO CRF will be used to stratify COVID-19 severity

according to a four-level scale: Care level 0: no treatment required;

Care level 1: ambulatory treatment; Care level 2: hospital admission

without or with oxygen supplementation; and Care level 3: intensive

care unit admission with or without mechanical ventilation.

2.6 Data collection time points

The minimum expectation calls for three data points (i.e., baseline and

12 and 24 months). A schematic description of the planned data col-

lection is provided in Figure 2. Because cohorts such as those proposed

here are highly valuable assets, longer follow-up is desirable andwill be

sought.

2.7 Core outcome measures (minimum data set)

Since the first cases of human infection by SARS-CoV-2 were detected

just over 2 years ago, it is impossible to predict the range of neu-

ropsychiatric sequelae thatmay ensue. On the other hand, as reviewed

above, acute and post-acute manifestations of COVID-19 disease

commonly include cognitive impairment, and less frequently, overt psy-

chiatric symptoms includingmood abnormalities and psychosis. There-

fore, we have chosen assessment instruments that allow an exhaustive

assessment of neurological and psychiatric symptoms. Given themulti-

national nature of the consortium, we have also chosen instruments

that are available and validated in as many languages as possible or, as

is the case for cognitive assessment tests, are as unbiased as possible

when used in individuals with varying mother tongues, literacy levels,

and cultural contexts. The following specific tools were selected (see

Table 3):

1. Phenomenological description: To be able to capture novel patient

descriptions and clinical signs, our assessment approach is flex-

ible and semi-structured. Specifically, the WHO semi-structured

interview Schedules for Clinical Assessment in Neuropsychiatry

(WHO SCAN) will be used to ascertain psychopathology and neu-

rological symptoms.125 Version 3 of WHO SCAN contains detailed

semiquantitative (dimensional) assessments of the subject’s report

F IGURE 2 Proposed longitudinal schedule for assessment of cohort members. FDG, fluorodeoxyglucose; MRI, magnetic resonance imaging;
SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
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TABLE 3 Summary of data to be collected

Domain Measures

Clinical, cognitive, and psychosocial assessments

Cognitive domains Orientation & language* ACE III and Shortened BostonNaming Test

Memory Episodic: Visual Paired Associates

Working: Corsi Block-Tapping Test

Semantic: Cactus & Camel Test

Executive function Inhibition (& psycho-motor speed): Color (or Size) Stroop

Planning – Problem solving: Tower of Hanoi

Decisionmaking – Impulsivity: Iowa, Gambling task

Psychomotor speed Symbol Substitution Test

Attention & visuo-spatial abilities Search Neglect: Bell cancellation

Perception Apperceptive Agnosia: Poppelreuter-Ghent’s

Overlapping Figures Test

Social cognition Theory ofMind: Frith-Happé animations

Neuropsychiatry and behavioral

neurology

World Health Organization Schedules for Clinical Assessment in Neuropsychiatry (WHOSCAN)

Clinical evaluation of

neurodegenerative disorders

TheNational Alzheimer’s Coordinating Center UniformDataset (NACCUDS)

Emotional reactivity assessment The Perth Emotional Reactivity Scale (PERS)81

Clinical cognitive diagnosis Mild cognitive impairment (amnestic or non-amnestic), and dementia

Psychosocial measures Quality of life measures; stressful life events; poverty and financial hardship

Semiquantitative clinical variables Anosmia/hyposmia smell recognition test; 2-minute walk test of fatigability

Neuroimaging

StructuralMRI Region specific volumetric, cortical surfaceWhitematter hyperintensities as a proxy for vascular disease

Vascular lesion burden: Infarcts, microbleeds

Diffusion tensor imaging Tract-specific fractional anisotropy (FA) andmean diffusivity (MA)

BOLD fMRI Data from functional connectivity (FC) analyses BOLD-derived voxel-based physiological (VBP) indices

of neurovascular coupling

18F-DG PET (only at UTHSA site) Region-specific glucose uptake asmarkers of tissuemetabolism and synaptic integrity

Blood-based biomarkers

AD-specific biomarkers Aβ42, Aβ40, p-tau181, p-tau217
Neurodegeneration and neuronal

activity/injury

NfL, GFAP, sTREM-2

Inflammatory biomarkers Bio-Plex Pro Human Cytokine panel: FGF basic, Eotaxin, G-CSF, GM-CSF, IFN-γ, IL-1β, IL-1ra, IL-1α,
IL-2Rα, IL-3, IL-12 (p40), IL-16, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, GRO-α, HGF, IFN-α2, LIF, MCP-3,

IL-10, IL-12 (p70), IL-13, IL-15, IL-17A, IP-10,MCP-1 (MCAF), MIG. β-NGF, SCF, SCGF-β, SDF-1α,
MIP-1α, MIP-1β, PDGF-BB, RANTES, TNF-α, VEGF, CTACK,MIF, TRAIL, IL-18,M-CSF, TNF-β

Genetics

DNA collection for GWAS orWhole Genome Sequencing

Note: Harmonized measures will not be able to be collected as suggested at all sites. The intent of the list of measures is to secure harmonization of those

measures that are locally available, to ensuremaximum and optimum data shareability.

Abbreviations: Aβ, amyloid beta; ACE III, Addenbrooke’s Cognitive Examination III; AD, Alzheimer’s disease; BOLD, blood oxygen level dependent; 18F-DG;

fluorodeoxyglucose; fMRI, functional magnetic resonance imaging; GFAP, glial fibrillary acidic protein; GWAS, genome-wide association studies; MRI, mag-

netic resonance imaging;NfL, neurofilament light chain; PET, positron emission tomography; p-tau, phosphorylated tau; sTREM-2, soluble triggering receptor

expressed onmyeloid cells 2; UTHSA, University of Texas Health San Antonio.
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of behavioral neurology (cognitive efficiency, memory for recent

events, executive function, language, etc.), and psychiatry (anxi-

ety, mood, hallucinations, delusions) phenomenology, as well as the

interviewer’s observations of interviewee behaviors. WHO SCAN

also provides automatized algorithms for all of the clinical diagnosis

contained in Section F of the International Classification of Dis-

eases revisions 10 (ICD-10) and 11 (ICD-11). When possible, and

as provided for in WHO SCAN, informants will be interviewed for

their impressions of the subject’s cognition and to confirm the accu-

racy of the subject’s responses. Pre COVID-19 data on historical

clinical phenomena and the previous life course, both of which are

important in modeling future outcomes, are also assessed in SCAN

and the SCAN2.1 Clinical History Schedule, which takes account of

externally provided data.

With the exception of personality disorders, the WHO SCAN

covers all forms of neuropsychiatric outcomes, including somatic

complaints; anxiety and mood disorders; obsessional phenomena;

neurodevelopmental phenomena (autism, attention deficit hyper-

activity disorder); psychosis; drug, alcohol, gambling, and eating

problems; and an assessment of cognitive decline. Outputs include

pre-specified symptoms (e.g., delusion, panic, elation), dimensional

symptom scores, and the determination of published diagnostic cri-

teria. Experienced psychopathologists can be trained by means of

a 3-day online course that includes role play and interview rat-

ing sessions to ensure concordance and reliability. WHO SCAN

is coordinated by a WHO advisory group that can advise on

training, translation, and research protocol specifications with the

support of centers throughout the world. If WHO SCAN is not

available in the local language, the semi-structured interview for

the Clinical Dementia Rating (CDR) scale and the WHO Mental

Health Gap Action Programme interview may be used as suitable

replacements.120

2. Neurological examination: The neurological evaluation at each site

is conducted and supervised by trained clinicians who are blind

to neuropsychological tests and PCR results and to SARS-CoV-2

testing status and history. The evaluation includes semiquantita-

tive assessments of smell, visual, and auditory perception; muscle

strength and tone; eye and facial movements; coordination, gait,

and balance; and muscular fatigue (after 2 minutes of walking).

With participant consent, neurological exams will be videotaped.

Diagnoses of parkinsonism and focality due to completed stroke

will be noted, as will incidental diagnoses of non-cognitive neu-

rological disorders (e.g., seizure neuropathy, headache). Finally,

the WHO SCAN interview permits the collection of the infor-

mation needed to score the CDR126 and will be used for this

purpose.

3. Cognitive assessment battery: A customized neurocognitive

assessment was developed by a subcommittee of the Consortium

members with technical expertise and extensive representation of

low- and middle-income countries (Argentina, China, Haiti, India)

to meet three criteria: (1) adapted to multiple cultural settings and

languages, and therefore minimally biased by formal education

and native tongue; (2) robust to low levels of formal education or

literacy; and (3) reasonably brief (it takes less than 60 minutes to

complete). Details are provided in Table 3. The neuropsychiatric

manifestations of SARS-CoV-2 infection have been characterized

in the acute phase of the disease, but less is known about long-term

sequelae. Given this uncertainty, it is reasonable to include tests

that probe multiple cognitive domains. Because both cortical and

subcortical circuits may be affected, a broad cognitive assessment

is warranted. Pictorial versions of most tests are proposed to

minimize biases imposed by language of origin and literacy levels.

The two tests that may need to be completed in a face-to-face

format, as they require understanding of natural language, are the

Addenbrooke’s Cognitive Examination III (a short but comprehen-

sive cognitive battery), and the shortened Boston Naming Test. All

the other tests can be computerized easily. To our knowledge, there

is currently no Visual Paired Associates Test that clearly mirrors

the verbal version. Orbito-frontal functions will be assessed using

the Iowa Gambling Task and the Probabilistic Reversal Learning

Task. The classic test for psycho-motor speed is the Digit Symbol

Substitution Test. The battery is completed by test for neglect,

high order visual perception, and social cognition. We expect some

degree of variation across sites on the specific tests used as a

consequence of, among other things, the availability of local norms

and validation, but every site will collect data on the same cognitive

domains using analogous tests when the exact versions are not

available. For meta-analytic assessments, we will use normalized

z-scores of the performance for each domain.

The following supplemental measures are proposed to facilitate

comparisons and data collation across studies affiliated with the

consortium.

1. To facilitate data sharing with ongoing studies, wherever feasible

sites will collect information to fill the National Alzheimer’s Coor-

dinating Center Uniform Data Set (NACC UDS).127–130 The NACC

established the UDS for longitudinal data by means of a standard-

ized clinical evaluation.127–130 NACC is responsible for developing

and maintaining a database of participant information collected

from all of the Alzheimer’s Disease Centers (ADCs) funded by the

National Institute on Aging (NIA). UDS defines an expanded, stan-

dardized clinical data set to provide ADC researchers a standard

set of assessment procedures, collected longitudinally, to better

characterize ADC participants with mild AD and MCI compared

to non-demented controls. The UDS has data collection forms for

initial and follow-up visits based on NACC definitions, a relational

database, and a data submission system enhanced to provide effi-

cient and secure access data submission and retrieval systems

(https://www.alz.washington.edu).128 The NACC UDS is validated

for international AD cohorts and is available in English, Spanish,

and Chinese (Mandarin). Psychosocial measures, including quality

of life, stressful life events, and poverty and financial hardship will

also be collected where possible. Admittedly, this information is

partially duplicativewithother components of theproposedassess-

ment. Local decisions over use will be driven by the availability of

https://www.alz.washington.edu
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locally validated and culturally adapted assessment tools, as well as

participant burden.

2. Emotional reactivity assessment: The Perth Emotional Reactivity

Scale (PERS), a self-reportmeasure of trait levels of emotional reac-

tivity, assesses the typical ease of activation, intensity, and duration

of individual positive and negative emotional responses.127 Con-

current validity has been demonstrated via congruent correlations

with other emotionmeasures.131

3. Neuroimaging will be performedwith two types of scans.

a. 1.5 and 3 Tesla scanners: To promote consistency in data anal-

ysis, we will follow standardized magnetic resonance imaging

(MRI) imaging datasets developed for the acquired 1.5T and 3T

scans by the Alzheimer’s Disease Neuroimaging Initiative Study

3 (ADNI-3). We are using ADNI phantoms to ensure adequate

harmonization of data collection across sites. By so doing, we

will optimize direct comparisons of various analysis methods,

particularly given large variations among older MRI systems

and the state-of-the-art systems available at high-end academic

centers. ADNI-3 provides a two-tiered approach to accom-

modate the range of variability in scanners, including ADNI-3

Basic and ADNI-3 Advanced. The latter include structural T1-

weighted, 3D fluid-attenuated inversion recovery, T2* gradient

recalled echo, arterial spin labeling, and high-resolution images

of the hippocampus. The advanced diffusion MRI and rest-

ing state functional MRI scans take advantage of simultaneous

multi-slice acceleration for echo-planar images. For longitu-

dinal consistency, advanced sequences can be downsampled

post-scan to match the basic sequences. The standard ADNI-

3 sequence acquisitions are listed in Table 3. We will collect

region-specific volumetric and cortical surface measures; white

matter hyperintensities as a proxy for vascular disease; vascular

lesionburden (including infarcts andmicrobleeds); tract-specific

fractional anisotropy andmeandiffusivity; BOLD-derived voxel-

based physiological indices of neurovascular coupling; and, if

PET is available, region-specific glucose uptake as markers of

tissuemetabolism and synaptic integrity.

b. 7 Tesla ultrahigh field scanners: The higher contrast and spa-

tial resolution of 7TMRI provides submillimetermeasurements,

allowing study of small cortical and subcortical structures of the

brain and providing superior detail to 3T. Enhanced anatomical

detail at 7T allows higher sensitivity inmeasuring sub-structural

volume loss, including hippocampal subfields132 and the earlier

detection of neurodegeneration implicated in ADRD. The UK

7T Network (which includes members of the CNS SARS-CoV-2

consortium) have previously tested and proved the repro-

ducibility of 7T scanners (Siemens and Phillips) across various

sites.133–135 The harmonized sequences, listed in Table 4, are

designed to study volumetric assessment of: cortex, hippocam-

pal subfields, and thalamus; quantitative cerebral white matter

changes and inflammation; iron content from blood breakdown

(cerebral microbleeds, microthrombi); markers of endothelial

injury; and volume and injury to the sub-structures of the brain

stem, including locus coeruleus. Comparative control groups

with identical 7T MRI images include age-, sex-, and ethnicity-

matched participants who are both healthy or have an illness of

similar severity (intensive care unit [ICU] admission, hospitaliza-

tionwithout ICU, or no hospitalization). The study of 7T imaging

precursors of AD will further benefit from an independent 7T

MRI study of patients with early onset AD as an additional com-

parison group (clinicaltrials.org Identifier: NCT04992975). We

will analyze the acquired data through data sharing agreements

based on the local expertise of each site within the 7T MRI

COVIDConsortium.

4. Biomarkers: Collection methods for whole bloods, plasma, serum,

anucleated blood cells, mouth swab for epigenomics, and cere-

brospinal fluid are detailed in Tables S1 and S2 in supporting

information. Blood spot is recommended for all sites, and blood or

salivary swab is recommended for DNA (genome-wide association

studies). Participating sites will collect, store, use, share, and

dispose of human biospecimens in accordance with the informed

consent signed by the subject, or under a waiver of informed

consent granted by an independent ethical review body at each

institution. When specimens are collected from humans for the

study purposes, the collection and storage process should aim

to adhere, as closely as possible, to harmonized study protocols

and procedures appropriate for the type of biospecimen being

collected and its intended uses. We will establish biorepositories

within global regions where biospecimens will be collected. Raw

data will be analyzed locally, such that only metadata will be shared

across the consortium. Specific agreements between each reposi-

tory and collection site will be (or have already been) established.

All biorepositories, whether large or represented by individual

freezers in laboratories, will follow best practices using effective

facility environments that include ambient temperature controls,

good air circulation, lighting, and security. Systems will be in place

to allow for local and remote temperature monitoring of freezers,

refrigerators, and other temperature-controlled environments.

Biorepositories will have emergency preparedness plans that cover

equipment failures and power interruption that include back-up

storage capacity and back-up power supplies such as genera-

tors (https://oir.nih.gov/sites/default/files/uploads/sourcebook/

documents/ethical_conduct/guidelines-biospecimen.pdf). Special

attention will be paid to the appropriate packaging and shipping of

human biospecimens between the collection site and the biorepos-

itory. This includes conforming to all applicable regulations and

standards, including, but not limited to, those of theUSDepartment

of Transportation (DOT; DOT PHMSA PHH50-0079, 2006) and

the International Air Transport Association (IATA; IATA Dangerous

Goods Regulations, 2019; IATA Infectious Substances Shipping

Guidelines, 2019). All personnel involved in shipping biological

materials should be trained properly for both air and ground

shipments. A full list of the proposed biomarkers is included in

Table 3.

5. Genotyping: Specific approaches will vary across sites, but at a

minimum, each dataset will contain genome-wide genotypes from

cohort individuals to address the role of ancestry and genetic

https://oir.nih.gov/sites/default/files/uploads/sourcebook/documents/ethical_conduct/guidelines
https://oir.nih.gov/sites/default/files/uploads/sourcebook/documents/ethical_conduct/guidelines
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TABLE 4 Description of 7 Tesla high fieldMRI sequences proposed

Sequence Acquisition parameters Measures assessed Time (min)

Set up / localizer GRE Positioning; shimming 5.5

3DT1MP2RAGE 348 slices (0.55 iso); TR∼6000; TE∼22.54;

TI1/2∼800/2500; AF=2

Morphometry; registration; hippocampus

segmentation

12.5

3D SWI 208 slices (0.375x0.375x0.75); TR∼24;

TE1/2∼8.16/18.35; AF=2

Small vessel analysis; T2* mapping; QSM 9

T2 TSE 36 slices (0.375x0.375x1.5); TR∼10060;

TE∼61; AF= 2

Hippocampus segmentation 4

T2 FLAIR 80 slices (0.75x0.75x1.5); TR∼14000; TE∼99;

TI∼2900; AF= 2

Whitematter hyperintensities 11

3D T2 Space 256 slices (0.6 iso); TR∼3400; TE∼367; AF= 3 Morphometry; hippocampus

segmentation; perivascular spaces

9.5

MT& nonMT 60 slices (0.4 iso); TR=548; TE=4.08; AF= 8 Locus coeruleus intensity; contrast’ MT 8

TOF (4 slabs) 192 slices (0.375 iso); TR∼14; TE∼4.5; AF= 3 Angiography; arteriolar analysis 6.5

Abbreviations: FLAIR, fluid-attenuated inversion recovery; GRE, gradient echo; MT, magnetization transfer; MP2RAGE, magnetization-prepared 2 rapid

acquisition gradient echo; QSM, quantitative susceptibility mapping; SWI, susceptibility weighted imaging; TE, echo time; TOF, time of flight; TR, repetition

time; TSE, turbo spin echo.

variation on susceptibility to neuropsychiatric sequelae. When

available, siteswill obtainwhole-genome sequencing data.Our con-

sortium is in a unique position to address the interaction between

genetics (including ancestral DNA) and viral strain variation onCNS

sequelae of SARS-CoV-2. If available, genotypingwill be carried out

using Illumina GSA (or equivalent chip) and imputation to the best

available panel for persons of specified ancestry.

2.8 Data analysis

Longitudinal data analysis approaches, including generalized linear

models, will be used, depending on the outcome of our interests and

data distribution. Time-to-eventmodelswill also be considered if there

are a sufficient number of data points. There will also be ample scope

for nested case-control design approaches to analyze within selected

subsets of the cohort data. These could be led by individual investi-

gators, for example, in small substudies for which limited numbers of

patients have undergone particular laboratory tests. When estimat-

ing the size of effects at the population level, and in particular for

probabilistic cohorts, error estimates will take account of and be cor-

rected for each sampling fraction, leading to greater generalizability

and external validity. Where individual level data sharing is not possi-

ble, we will use meta-analytic approaches to compare findings across

countries.

Despite the great effort made by the Consortium to harmonize

methods and assessment tools, the approach proposed here has lim-

itations due to the likely heterogeneity of the samples that will be

collected across several important dimensions. Ethnic and genetic het-

erogeneity is a desirable feature of the approach and will increase

generalizability of the findings across populations. On the other hand,

multiplicity of virus variants as the pandemic has progressed is a

likely source of variance that will need to be addressed. Voluntary

reporting of viral genomes to the Global Initiative on Sharing All

InfluenzaData (GISAID)website is theprimary source for phylodynam-

ics of SARS-CoV-2 in participant countries (https://www.gisaid.org/

phylodynamics/) including most of the Consortium members. Because

individual-level data of viral genomes are unlikely to be available for

most sites, prevailing variants at the time of infection for cohort par-

ticipants will be used as a covariate for all analyses and meta-analyses.

Similarly, type and dose number of vaccines will be used as a covariate.

Another possible source of heterogeneity is the precision ofCOVID-19

diagnosis across sites, particularly when comparing academic centers

in developed countries to community samples in developing coun-

tries. We will minimize the impact of such differences by adhering

to WHO diagnostic criteria across the board, and by using the CRF

developed by theWHOworkgroup on NeuroCOVID to collect clinical

information.

Data heterogeneity is an inescapable aspect of large-scale, multina-

tional studies, but previous experience shows that it can be addressed

with appropriate harmonization.136–139 The Consortium has addition-

ally adopted flexibility of studydesigns,whichwill increase the richness

of the datasets but further increase variability. The intent of the

Consortium members is that by harmonizing data collection and mea-

surementswewill increase the likelihoodof cross-comparisons and the

interpretability of meta-analytic approaches. Neuropsychiatric seque-

lae of COVID-19 obey multifactorial causation and may potentially

emerge by the interactions of multiple, rather than a singular factor,

including baseline lifestyle differences, impact of social restrictions and

other measures, type and timing of COVID-19 treatment (including

vaccines), genomic viral variants, and possibly others. Observational

studies combining an in-depth analytical design andmultiple measure-

ments have been proposed as a means to address such a complex

interaction problem.140 Also, integrative analytical approaches have

been shown to perform well in observational studies in infectious

diseases.141 Furthermore, more extensive measurements may more

https://www.gisaid.org/phylodynamics
https://www.gisaid.org/phylodynamics
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accurately capture and parametrize the biological question at hand, as

has been shown by, for example, the inclusion of genetic data in obser-

vational studies toward establishing inference.142 Causality inference

can be approached in a stepwise, tiered fashion that will be possi-

ble by the scope of the Consortium. For instance, estimands of causal

relationships identified among recorded variables may be identified

from prospective evaluation of COVID-19 survivors and the refine-

ment of associations.143 Confounders and mimics will be addressed

where possible via supplementary assessments where available (such

as psychosocial measures, including quality of life, stressful life events,

poverty, and financial hardship). Biomarkers and neuroimaging indices

may also be used to improve causal associations.

In summary, the Consortium proposes a combination of design and

statistical methods as a means of approaching causal inference144,145

of the COVID-19 neuropsychiatric sequelae. We expect that deep

phenotyping of neuropsychiatric sequelae may provide a series of

candidate syndromes with phenomenological and biological charac-

terization that can be further explored.146 By generating high-quality

harmonized data across sites we aim to capture both descriptive and,

where possible, causal associations. Notably, even descriptive (rather

than causal) associations will advance our knowledge of post-COVID-

19 neuropsychiatric manifestations.

2.9 Stay-in-touch strategy

To maintain contact with participants after the initial assessment, we

will use a cell phone–based technology developed by Prof. Sriram Iyen-

gar, termed Txt2Info, which provides precision bidirectional mass com-

munications during pandemics. Txt2Info combines judicious use of text

messaging and an easy-to-use REDCap survey instrument in a simple,

lightweight manner. English and Spanish are currently supported, but

other languages can be easily and quickly added. Txt2Info is designed

to be rapidly customized and deployed for any scenario that requires

real-time dissemination of information and community-sourced data

collection.

2.10 Determining pre-exposure cognitive status

A key consideration in the recruitment of new cohorts is the assess-

ment of pre-exposure cognitive status because pre-exposure decline

(even in the absence of a clinical diagnosis of cognitive impairment or

dementia)will result in exclusion fromanalyses. Becausewewill be col-

lecting new cohorts, we will not have pre-exposure assessments and

will have to rely on indirect strategies to establish pre-morbid level

of function. First, we will gather information about the pre-baseline

functional ability of the participant through theWHOSCAN interview.

Second, where available we will interview a caregiver/informant using

the CDR scale or the corresponding section of WHO SCAN. Finally,

we will develop cognitive estimates of pre-morbid abilities.147–151

These combination methods are necessary because measures typi-

cally used in the United States (e.g., the National Adult Reading Test

or the Weschler vocabulary subtest) are very limited in high illiteracy

contexts such as Argentina. Most cognitive tests have robust norms

established in our study population. Inmaking diagnoses, wewill incor-

porate clinical judgment of cognitive decline, particularly with respect

to pre-morbid andbaseline levels of cognition. Local norms that include

age and education will also be routinely considered, both in making

consensus diagnoses and in formal statistical analysis.

2.11 Mortality endpoints

Efforts will be made to ascertain death certificates, contact significant

others, or to search the National Death Index (https://www.cdc.gov/

nchs/ndi/index.htm) to track participants who are lost to follow-up. In

Argentina, we will track deaths in the registry of the provincial Emer-

gency Operations Committee (http://coe.jujuy.gob.ar/noticias/). Other

locations will track as available.

2.12 Consortium agreement and data sharing
procedures

The Consortium is led by a steering committee. Multiple subcom-

mittees address specific areas of focus, including clinical definitions,

epidemiological designs, clinical evaluation, cognitive assessments,

biomarkers, and neuroimaging. Subcommittees meet ad hoc based on

specific needs. TheentireConsortiummeets every fortnight via remote

conferencing. Funding opportunities and publication proposals are dis-

cussed in the open meeting, including invitations to collaborate, and

interested parties can continue to meet at their discretion. All pro-

tocols, publication drafts, and minutes from subcommittee meetings

are made available to all members through a digital board. Each local

site will be led by one to two principal investigators (neurologists, psy-

chiatrists, or epidemiologists) and a team of trained clinical research

associates. Adata sharing agreement regulates (and allows collationof)

deidentified results usingmeta-analytic approaches.

2.13 Ethical considerations

The methods presented here have been approved by several institu-

tional review boards and ethics committees affiliated with Consortium

member institutions (University of Texas Health San Antonio, Uni-

versity of Haifa, University of Nottingham, Athens Naval Hospital,

Ministry ofHealth of the Province of Jujuy, LaredoHealthDepartment,

among many others). The Consortium members will seek and obtain

approval from the corresponding local regulatory institutional boards

prior to enrolling participants in any cohort and will include specific

informed consent forms for all supplementary data collection, partic-

ularly when risks of complications may be somewhat higher such as

when collecting spinal fluid samples.

https://www.cdc.gov/nchs/ndi/index.htm
https://www.cdc.gov/nchs/ndi/index.htm
http://coe.jujuy.gob.ar/noticias/
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3 DISCUSSION

The research described here aims to provide harmonized method-

ologies to better understand whether and how the SARS-CoV-2

pandemic contributes to the risk (andmechanism[s]) of ADRD through

a population-based, quasi-experimental model. Through a global net-

work of study teams, we propose to provide a scientific framework to

characterize the neurobehavioral and neuropsychiatric phenomenol-

ogy associated with SARS-CoV-2 in harmonized, multinational, longi-

tudinal cohorts of post SARS-CoV-2 infection patients. Recruitment

is ongoing in several cohorts. We plan to obtain core initial data

within 18 months of recovery from hospital discharge or documented

infection by PCR. Longitudinal follow-up is proposed at 12 and 24

months after the initial evaluation but with an expectation to extend

the observation of cohorts as long as feasible. An mHealth keeping-

in-touch process is planned to minimize attrition rates. High rates

of mutation in SARS-CoV-2 (https://www.gisaid.org/phylodynamics/

global/nextstrain/) strongly suggest that viral infectivity, including neu-

rotropism, may not be uniform across countries impacted. However,

regardless of the molecular mechanism(s) involved in chronic or pro-

gressive injury to the CNS, we assume that the fundamental biology

driving disease development is largely the same across all human

ancestries, even though redundant or parallel processes may result in

diverse pathways leading to the same clinical phenotypes. Conversely,

identical genetic variants may be associated with different pheno-

types conditioned by the genomic context or ancestry, as well as by

environmental influences. Therefore, variability, both in the effect of

genomic variations and in the sources of risk for specific phenotypes,

is expected to be inherently affected by contexts.152–154 All mem-

bers of the Consortium have agreed to share data for meta-analytic

and replication efforts in the future. Ongoing data collection efforts

using CNS-SC2 methodology in Argentina, Canada, Cuba, Denmark,

England, Greece, India, Israel, Sweden, and the United States will pro-

vide multiple opportunities to attempt replication or expansion of the

findings.

3.1 Detecting novel symptoms

A critical caveat of this proposal is that the cognitive impairment

triggered by SARS-CoV-2 infection may resemble ADRD while differ-

ing from it in subtle but important ways. We therefore have chosen

clinical assessment, imaging, and biomarker tools that will allow us

to detect and describe even subtle differences. The semi-structured

interview WHO SCAN makes use of a conversational interviewing

approach, helping patients to describe in their own words their feel-

ings, thoughts, and perceptions. The WHO SCAN examiner is trained

to determine which of these verbal and subjective descriptions rep-

resents abnormal psychopathological phenomena (predefined in a

glossary of symptom definitions officially endorsed by WHO),125 a

technique that lends itself also to describing previously unrecognized

phenomena or symptoms not catalogued as part of typical syndromes.

Such novel emerging phenomena are often observed when the WHO

SCAN is translated into indigenous culture first languages that not

only do not share all of the Western conventional or universal expe-

riences, but that also place importance on psychological experiences

that are uncommon outside of that culture.155 While there are use-

ful structured (e.g., Composite International Diagnostic Interview,

Clinical Interview Schedule–Revised) and semi-structured (e.g., Struc-

tured Clinical Interview for the Diagnostic and Statistical Manual of

Mental Disorders, Diagnostic Interview for Genetic Studies) inter-

views and short checklists (e.g., General Anxiety Disorder-7, Patient

Health Questionnaire-9, Edinburgh Postnatal Depression Schedule) in

widespread use in neuropsychiatry, including clinical trial and epidemi-

ological research, these more structured approaches are only capable

of identifying established and recognized symptoms, syndromes, and

predefined disorder categories. This is problematic because novel

symptoms may prove crucial to tracking and predicting short- and

longer-term CNS effects of novel viruses, including COVID-19 out-

comes. Novel symptom discoveries could also lead to the develop-

ment of new, more appropriate, brief structured assessments for

wider use.

3.2 Minimizing cultural bias

Cultural variables can also exert a powerful effect on test performance

through construct, method, and item biases,156 but their impact is

often underestimated. Indeed, the influence of culture on cognition

poses great challenges to cognitive assessments in culturally diverse

samples, not the least of which includes the difficulty of responding

to the wide range of cultural contexts, conditions, and circumstances

underwhich testingmay occur around theworld.156 Thus, while a com-

mon neuropsychological assessment is an essential component of the

longitudinal assessments planned by the Consortium, we recognized

that harmonization of testing procedures across cultures, educational

attainment levels, languages, and sociocultural environments is a very

difficult task. Standard cognitive processes are biologically identical for

all humans, but individual, social, and environmental differences may

significantly change the way in which cognitive processes are engaged,

resulting in different patterns of abilities across cultures.157,158 For

instance, studies in Aboriginal peoples showunique approaches to spa-

tial relationships159 and numerical andmemory tasks.160–163 To detect

cognitive impairment and cognitive decline therefore requires a basic

understanding of which skills are needed for normal function in a spe-

cific cultural context.164 Culture-informed adaptations are made to

the content and administration of instruments to reflect the experi-

ences of the population being assessed and to retainwithin-population

variance.165

The basic idea behind cross-cultural measurement is that the same

aspect of cognitive abilities is assessed similarly in different cultural

groups using tests selected, optimized, and normed for each individual

group. In this case, absolute scores would not be directly compara-

ble across groups, but deviance from norms would be comparable

regardless of differences that may be present in a variety of impor-

tant background characteristics that vary across and within cultures.

https://www.gisaid.org/phylodynamics/global/nextstrain/
https://www.gisaid.org/phylodynamics/global/nextstrain/
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To address these issues, a panel of experts from across the CNS-SC2

Consortium (including key personnel from each continent and with

expertise in Aboriginal cognitive assessments) worked on harmoniza-

tionof culturally appropriate conceptual tasks (e.g., content, sensitivity,

and face value of the tools) to minimize three key sources of bias:

fairness, instrument, and administration. Fairness, understood as equi-

table treatment throughout the testing process, refers to themanner in

which the tool is administered. Instrument bias refers to all the proper-

ties associated with an instrument that are not the target of study but

nonetheless can result in group differences in test scores. For instance,

if a computer is used to measure reaction times in individuals who

have never used a device and others who have lifetime usage, differ-

ential familiarity with computers is expected to influence the obtained

results regardless of the construct being investigated. Administration

bias refers to group differences in test scores due to aspects of the

interaction and communication between the examiner and examinee.

Factors such as inappropriate testing conditions, unequal opportunity

to familiarize oneself with the test format, unavailability of practice

materials and unequal exposure to those materials, unequal perfor-

mance feedback, and lack of standardized test administration can

all lead to administration bias. We have created a standard operat-

ing procedure manual to ensure equitable treatment throughout the

Consortium.

3.3 Focus on olfactory impairment

Last, our semi-quantitative neurological examination is primarily

focused on olfactory, motor, and cognitive function. Other aspects of

the clinical examination (i.e., visual and auditory perception, muscle

strength and tone, eye and facial movements, coordination, gait and

balance, andmuscular fatigueduring6minutesofwalking) are included

to achieve broad characterization of concomitant complications. There

are multiple sound reasons to pay particular attention to olfactory

deficits in this context. First, increased Aβ burden is correlated with

olfactory impairment in older adults with amnestic MCI,166,167 and

both factors may be predictive of ADRD.166,167 Olfactory impair-

ment is also correlated with tau pathology and neuroinflammation

in patients with ADRD168 and predictive of dementia diagnosis in

several pathologies.36,37 Asmentioned in the introduction, SARS-CoV-

2 invades the olfactory bulb, and this is the likely explanation for

the prevalent anosmia in infected patients.20–22,24–27 This mechanism

has been well established in experimental animals26 and is well sup-

ported by imaging studies of sub-acute COVID-19 patients.29–34 Fruit

and flower odor categories have a graded structure that is a uni-

versal property retained across categories,169 such that they can be

stably tested. Second, the amygdala is one of the primary connec-

tions of the olfactory bulb,170 has among the highest levels of ACE2

expression in the brain,171 is a preferential target of COVID-19 in the

post mortem tissue of patients,172 and is affected in imaging studies

of long COVID patients.173 Most notably, a recent publication from

the UK Biobank found reductions in gray matter thickness and tis-

sue contrast in the orbitofrontal cortex and parahippocampal gyrus;

changes in markers of tissue damage in regions functionally connected

to the primary olfactory cortex, and reductions in global brain size

of post-COVID participants even after excluding those who had been

hospitalized.174 Moreover, infected participants had more cognitive

decline than controls.174 Likely as a consequence of this involvement,

changes in emotional reactivity have been reported as a prominent

behavioral change after SARS-CoV-2 infection.
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