376 research outputs found

    Metal Hydrides Form Halogen Bonds: Measurement of Energetics of Binding

    Get PDF
    The formation of halogen bonds from iodopentafluorobenzene and 1-iodoperfluorohexane to a series of bis(η5-cyclopentadienyl)metal hydrides (Cp2TaH3, 1; Cp2MH2, M = Mo, 2, M = W, 3; Cp2ReH, 4; Cp2Ta(H)CO, 5; Cp = η5-cyclopentadienyl) is demonstrated by 1H NMR spectroscopy. Interaction enthalpies and entropies for complex 1 with C6F5I and C6F13I are reported (ΔH° = −10.9 ± 0.4 and −11.8 ± 0.3 kJ/mol; ΔS° = −38 ± 2 and −34 ± 2 J/(mol·K), respectively) and found to be stronger than those for 1 with the hydrogen-bond donor indole (ΔH° = −7.3 ± 0.1 kJ/mol, ΔS° = −24 ± 1 J/(mol·K)). For the more reactive complexes 2–5, measurements are limited to determination of their low-temperature (212 K) association constants with C6F5I as 2.9 ± 0.2, 2.5 ± 0.1, <1.5, and 12.5 ± 0.3 M–1, respectively

    Action anticipation based on an agent's epistemic state in toddlers and adults

    Get PDF
    Do toddlers and adults engage in spontaneous Theory of Mind (ToM)? Evidence from anticipatory looking (AL) studies suggests that they do. But a growing body of failed replication studies raised questions about the paradigm’s suitability. In this multi-lab collaboration, we test the robustness of spontaneous ToM measures. We examine whether 18- to 27-month-olds’ and adults’ anticipatory looks distinguish between two basic forms of an agent’s epistemic states: knowledge and ignorance. In toddlers [ANTICIPATED n = 520 50% FEMALE] and adults [ANTICIPATED n = 408, 50% FEMALE] from diverse ethnic backgrounds, we found [SUPPORT/NO SUPPORT] for epistemic state-based action anticipation. Future research can probe whether this conclusion extends to more complex kinds of epistemic states, such as true and false beliefs

    Microarray Analysis in the Archaeon Halobacterium salinarum Strain R1

    Get PDF
    Background: Phototrophy of the extremely halophilic archaeon Halobacterium salinarum was explored for decades. The research was mainly focused on the expression of bacteriorhodopsin and its functional properties. In contrast, less is known about genome wide transcriptional changes and their impact on the physiological adaptation to phototrophy. The tool of choice to record transcriptional profiles is the DNA microarray technique. However, the technique is still rarely used for transcriptome analysis in archaea. Methodology/Principal Findings: We developed a whole-genome DNA microarray based on our sequence data of the Hbt. salinarum strain R1 genome. The potential of our tool is exemplified by the comparison of cells growing under aerobic and phototrophic conditions, respectively. We processed the raw fluorescence data by several stringent filtering steps and a subsequent MAANOVA analysis. The study revealed a lot of transcriptional differences between the two cell states. We found that the transcriptional changes were relatively weak, though significant. Finally, the DNA microarray data were independently verified by a real-time PCR analysis. Conclusion/Significance: This is the first DNA microarray analysis of Hbt. salinarum cells that were actually grown under phototrophic conditions. By comparing the transcriptomics data with current knowledge we could show that our DNA microarray tool is well applicable for transcriptome analysis in the extremely halophilic archaeon Hbt. salinarum. The reliability of our tool is based on both the high-quality array of DNA probes and the stringent data handling including MAANOVA analysis. Among the regulated genes more than 50% had unknown functions. This underlines the fact that haloarchaeal phototrophy is still far away from being completely understood. Hence, the data recorded in this study will be subject to future systems biology analysis

    Proteomic Characterization of Cellular and Molecular Processes that Enable the Nanoarchaeum equitans-Ignicoccus hospitalis Relationship

    Get PDF
    Nanoarchaeum equitans, the only cultured representative of the Nanoarchaeota, is dependent on direct physical contact with its host, the hyperthermophile Ignicoccus hospitalis. The molecular mechanisms that enable this relationship are unknown. Using whole-cell proteomics, differences in the relative abundance of >75% of predicted protein-coding genes from both Archaea were measured to identify the specific response of I. hospitalis to the presence of N. equitans on its surface. A purified N. equitans sample was also analyzed for evidence of interspecies protein transfer. The depth of cellular proteome coverage achieved here is amongst the highest reported for any organism. Based on changes in the proteome under the specific conditions of this study, I. hospitalis reacts to N. equitans by curtailing genetic information processing (replication, transcription) in lieu of intensifying its energetic, protein processing and cellular membrane functions. We found no evidence of significant Ignicoccus biosynthetic enzymes being transported to N. equitans. These results suggest that, under laboratory conditions, N. equitans diverts some of its host's metabolism and cell cycle control to compensate for its own metabolic shortcomings, thus appearing to be entirely dependent on small, transferable metabolites and energetic precursors from I. hospitalis

    Validation of an open source, remote web‐based eye‐tracking method (WebGazer) for research in early childhood

    Get PDF
    Measuring eye movements remotely via the participant's webcam promises to be an attractive methodological addition to in-person eye-tracking in the lab. However, there is a lack of systematic research comparing remote web-based eye-tracking with in-lab eye-tracking in young children. We report a multi-lab study that compared these two measures in an anticipatory looking task with toddlers using WebGazer.js and jsPsych. Results of our remotely tested sample of 18-27-month-old toddlers (N = 125) revealed that web-based eye-tracking successfully captured goal-based action predictions, although the proportion of the goal-directed anticipatory looking was lower compared to the in-lab sample (N = 70). As expected, attrition rate was substantially higher in the web-based (42%) than the in-lab sample (10%). Excluding trials based on visual inspection of the match of time-locked gaze coordinates and the participant's webcam video overlayed on the stimuli was an important preprocessing step to reduce noise in the data. We discuss the use of this remote web-based method in comparison with other current methodological innovations. Our study demonstrates that remote web-based eye-tracking can be a useful tool for testing toddlers, facilitating recruitment of larger and more diverse samples; a caveat to consider is the larger drop-out rate

    Characterisation of CART-containing neurons and cells in the porcine pancreas, gastro-intestinal tract, adrenal and thyroid glands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The peptide CART is widely expressed in central and peripheral neurons, as well as in endocrine cells. Known peripheral sites of expression include the gastrointestinal (GI) tract, the pancreas, and the adrenal glands. In rodent pancreas CART is expressed both in islet endocrine cells and in nerve fibers, some of which innervate the islets. Recent data show that CART is a regulator of islet hormone secretion, and that CART null mutant mice have islet dysfunction. CART also effects GI motility, mainly via central routes. In addition, CART participates in the regulation of the hypothalamus-pituitary-adrenal-axis. We investigated CART expression in porcine pancreas, GI-tract, adrenal glands, and thyroid gland using immunocytochemistry.</p> <p>Results</p> <p>CART immunoreactive (IR) nerve cell bodies and fibers were numerous in pancreatic and enteric ganglia. The majority of these were also VIP IR. The finding of intrinsic CART containing neurons indicates that pancreatic and GI CART IR nerve fibers have an intrinsic origin. No CART IR endocrine cells were detected in the pancreas or in the GI tract. The adrenal medulla harboured numerous CART IR endocrine cells, most of which were adrenaline producing. In addition CART IR fibers were frequently seen in the adrenal cortex and capsule. The capsule also contained CART IR nerve cell bodies. The majority of the adrenal CART IR neuronal elements were also VIP IR. CART IR was also seen in a substantial proportion of the C-cells in the thyroid gland. The majority of these cells were also somatostatin IR, and/or 5-HT IR, and/or VIP IR.</p> <p>Conclusion</p> <p>CART is a major neuropeptide in intrinsic neurons of the porcine GI-tract and pancreas, a major constituent of adrenaline producing adrenomedullary cells, and a novel peptide of the thyroid C-cells. CART is suggested to be a regulatory peptide in the porcine pancreas, GI-tract, adrenal gland and thyroid.</p

    An update on molecular cat allergens: Fel d 1 and what else? Chapter 1: Fel d 1, the major cat allergen

    Get PDF
    Background: Cats are the major source of indoor inhalant allergens after house dust mites. The global incidence of cat allergies is rising sharply, posing a major public health problem. Ten cat allergens have been identified. The major allergen responsible for symptoms is Fel d 1, a secretoglobin and not a lipocalin, making the cat a special case among mammals. Main body: Given its clinical predominance, it is essential to have a good knowledge of this allergenic fraction, including its basic structure, to understand the new exciting diagnostic and therapeutic applications currently in development. The recent arrival of the component-resolved diagnosis, which uses molecular allergens, represents a unique opportunity to improve our understanding of the disease. Recombinant Fel d 1 is now available for in vitro diagnosis by the anti-Fel d 1 specific IgE assay. The first part of the review will seek to describe the recent advances related to Fel d 1 in terms of positive diagnosis and assessment of disease severity. In daily practice, anti-Fel d 1 IgE tend to replace those directed against the overall extract but is this attitude justified? We will look at the most recent arguments to try to answer this question. In parallel, a second revolution is taking place thanks to molecular engineering, which has allowed the development of various forms of recombinant Fel d 1 and which seeks to modify the immunomodulatory properties of the molecule and thus the clinical history of the disease via various modalities of anti-Fel d 1-specific immunotherapy. We will endeavor to give a clear and practical overview of all these trends
    corecore