427 research outputs found

    Humic Substances Enhance Chlorothalonil Phototransformation via Photoreduction and Energy Transfer

    Get PDF
    ABSTRACT: The photodegradation of chlorothalonil, a polychlorinated aromatic fungicide widely used in agriculture, was investigated under ultraviolet–visible irradiation in the presence and absence of different humic substances that significantly enhance the chlorothalonil phototransformation. On the basis of a kinetic model, an analytical study, the effect of scavengers, the chlorothalonil phosphorescence measurement, and varying irradiation conditions, it was possible to demonstrate that this accelerating effect is due to their capacity to reduce the chlorothalonil triplet state via H-donor reaction and to energy transfer from the triplet humic to ground state chlorothalonil. Energy transfer occurs at wavelengths below 450 nm and accounts for up to 30% of the reaction in deoxygenated medium upon irradiation with polychromatic light (300–450 nm). This process is more important with Elliott humic and fulvic acids and with humic acids extracted from natural carbonaceous material than with Nordic NOM and Pahokee peat humic acids. The obtained results are of high relevance to understanding the processes involved in chlorothalonil phototransformation and the photoreactivity of humic substances. Chlorothalonil is one of the rare molecules shown to react by energy transfer from excited humic substances

    The success of the Montreal Protocol in mitigating interactive effects of stratospheric ozone depletion and climate change on the environment

    Get PDF
    The Montreal Protocol and its Amendments have been highly effective in protecting the stratospheric ozone layer, preventing global increases in solar ultraviolet-B radiation (UV-B; 280-315 nm) at Earth's surface, and reducing global warming. While ongoing and projected changes in UV-B radiation and climate still pose a threat to human health, food security, air and water quality, terrestrial and aquatic ecosystems, and construction materials and fabrics, the Montreal Protocol continues to play a critical role in protecting Earth's inhabitants and ecosystems by addressing many of the United Nations Sustainable Development Goals.Non peer reviewe

    Dry Eye Parameters and Lid Geometry in Adults Born Extremely, Very, and Moderately Preterm with and without ROP: Results from the Gutenberg Prematurity Eye Study

    Get PDF
    Background/Aims: This study aimed to analyze the effects of perinatal history on tear film properties and lid geometry in adults born preterm. Methods: The Gutenberg Prematurity Eye Study (GPES) is a German prospective examination of adults born preterm and term aged 18 to 52 years with Keratograph® 5M and Schirmer test I. Main outcome measures were first non-invasive tear film break-up time (F-NITBUT), bulbar redness (BR), Schirmer test, and nasal palpebral angle measurement. The associations with gestational age (GA), birth weight (BW), and BW percentile, retinopathy of prematurity (ROP), ROP treatment, and other perinatal factors were evaluated using regression analyses. Results: 489 eyes of 255 preterm and 277 eyes of 139 full-term individuals (aged 28.6 +/− 8.8 years, 220 females) were included. Of these, 33 participants (56 eyes) had a history of spontaneously regressed ROP and 9 participants (16 eyes) had a history of ROP treatment. After adjustment for age and sex, lower F-NITBUT (<20 s) was associated with ROP treatment (OR = 4.42; p = 0.025). Lower GA correlated with increased bulbar redness (B = −0.02; p = 0.011) and increased length of wetting in the Schirmer test (B = −0.69; p = 0.003). Furthermore, low GA was associated with narrowing of the nasal palpebral angle (B = 0.22; p = 0.011) adjusted for age and sex, but not when considering ROP in the multivariable model. Conclusion: Our analyses indicate that perinatal history affects ocular surface properties, tear production and lid geometry in adults born term and preterm. This might indicate that affected persons have a predisposition to diseases of the corneal surface such as the dry eye disease

    United Nations Environment Programme (UNEP), Questions and Answers about the Effects of Ozone Depletion, UV Radiation, and Climate on Humans and the Environment. Supplement of the 2022 Assessment Report of the UNEP Environmental Effects Assessment Panel

    Get PDF
    This collection of Questions & Answers (Q&As) was prepared by the Environmental Effects Assessment Panel (EEAP) of the Montreal Protocol under the umbrella of the United Nations Environment Programme (UNEP). The document complements EEAP’s Quadrennial Assessment 2022 (https://ozone. unep.org/science/assessment/eeap) and provides interesting and useful information for policymakers, the general public, teachers, and scientists, written in an easy-to-understand language

    Rational Design of Pathogen-Mimicking Amphiphilic Materials as Nanoadjuvants

    Get PDF
    An opportunity exists today for cross-cutting research utilizing advances in materials science, immunology, microbial pathogenesis, and computational analysis to effectively design the next generation of adjuvants and vaccines. This study integrates these advances into a bottom-up approach for the molecular design of nanoadjuvants capable of mimicking the immune response induced by a natural infection but without the toxic side effects. Biodegradable amphiphilic polyanhydrides possess the unique ability to mimic pathogens and pathogen associated molecular patterns with respect to persisting within and activating immune cells, respectively. The molecular properties responsible for the pathogen-mimicking abilities of these materials have been identified. The value of using polyanhydride nanovaccines was demonstrated by the induction of long-lived protection against a lethal challenge of Yersinia pestis following a single administration ten months earlier. This approach has the tantalizing potential to catalyze the development of next generation vaccines against diseases caused by emerging and re-emerging pathogens

    Conducting clinical genomics research during the COVID-19 pandemic: Lessons learned from the CSER consortium experience

    Get PDF
    Clinical research studies have navigated many changes throughout the COVID-19 pandemic. We sought to describe the pandemic′s impact on research operations in the context of a clinical genomics research consortium that aimed to enroll a majority of participants from underrepresented populations. We interviewed (July to November 2020) and surveyed (May to August 2021) representatives of six projects in the Clinical Sequencing Evidence-Generating Research (CSER) consortium, which studies the implementation of genome sequencing in the clinical care of patients from populations that are underrepresented in genomics research or are medically underserved. Questions focused on COVID′s impact on participant recruitment, enrollment, and engagement, and the transition to teleresearch. Responses were combined and thematically analyzed. Projects described factors at the project, institutional, and community levels that affected their experiences. Project factors included the project′s progress at the pandemic′s onset, the urgency of in-person clinical care for the disease being studied, and the degree to which teleresearch procedures were already incorporated. Institutional and community factors included institutional guidance for research and clinical care and the burden of COVID on the local community. Overall, being responsive to community experiences and values was essential to how CSER navigated evolving challenges during the COVID-19 pandemic

    Seroprevalence of Bordetella pertussis antibodies in adults in Hungary: results of an epidemiological cross-sectional study.

    Get PDF
    BACKGROUND: Pertussis (whooping cough) is well known to be underreported, particularly among adults, who can act as an infectious reservoir, potentially putting susceptible newborns at risk of serious illness. The purpose of this study was to estimate the seroprevalence of pertussis in adults in Hungary. METHODS: This epidemiological, cross-sectional study was conducted in adults in five general practitioners' practices in Hungary. Serum anti-pertussis toxin immunoglobulin G (anti-PT IgG) antibody levels were analyzed using enzyme-linked immunosorbent assay. Sera were classified following manufacturer's instructions as: strongly indicative of current/recent infection (>/=1.5 optical density [OD] units); indicative of current/recent infection (>/=1.0 OD units); seropositive (>0.3 OD units); or seronegative (/=60 years (odds ratio [OR], 1.97; 95% confidence interval [CI], 1.39-2.80; p = .0002) or 18-29 years (OR, 1.67; 95% CI, 1.13-2.46; p = .0094) vs. 45-59 years; former smoker (OR, 1.46; 95% CI, 1.08-1.97; p = .014) or current smoker (OR, 1.38; 95% CI, 1.01-1.89; p = .045) vs. never smoker; and male (OR, 1.30; 95% CI, 1.01-1.68; p = .041) vs. female. Also, between increased rates of probable current/recent infection and current smoker (OR, 7.50; 95% CI, 2.32-24.31; p = .0008) or former smoker (OR, 4.07; 95% CI, 1.21-13.64; p = .023) vs. never smoker. CONCLUSIONS: Approximately 85% of the adults studied were seronegative and therefore susceptible to pertussis infection. Approximately 1% had anti-PT IgG levels indicative of current/recent pertussis infection, which could potentially be transmitted to susceptible young infants. Vaccination of adults is a key way to indirectly protect infants. TRIAL REGISTRATION: Clinical Trials.gov NCT02014519 . Prospectively registered 12 December 2013

    Sunlight-mediated inactivation of health-relevant microorganisms in water: A review of mechanisms and modeling approaches

    Get PDF
    Health-relevant microorganisms present in natural surface waters and engineered treatment systems that are exposed to sunlight can be inactivated by a complex set of interacting mechanisms. The net impact of sunlight depends on the solar spectral irradiance, the susceptibility of the specific microorganism to each mechanism, and the water quality; inactivation rates can vary by orders of magnitude depending on the organism and environmental conditions. Natural organic matter (NOM) has a large influence, as it can attenuate radiation and thus decrease inactivation by endogenous mechanisms. Simultaneously NOM sensitizes the formation of reactive intermediates that can damage microorganisms via exogenous mechanisms. To accurately predict inactivation and design engineered systems that enhance solar inactivation, it is necessary to model these processes, although some details are not yet sufficiently well understood. In this critical review, we summarize the photo-physics, -chemistry, and -biology that underpin sunlight-mediated inactivation, as well as the targets of damage and cellular responses to sunlight exposure. Viruses that are not susceptible to exogenous inactivation are only inactivated if UVB wavelengths (280 – 320 nm) are present, such as in very clear, open waters or in containers that are transparent to UVB. Bacteria are susceptible to slightly longer wavelengths. Some viruses and bacteria (especially Gram-positive) are susceptible to exogenous inactivation, which can be initiated by visible as well as UV wavelengths. We review approaches to model sunlight-mediated inactivation and illustrate how the environmental conditions can dramatically shift the inactivation rate of organisms. The implications of this mechanistic understanding of solar inactivation are discussed for a range of applications, including recreational water quality, natural treatment systems, solar disinfection of drinking water (SODIS), and enhanced inactivation via the use of sensitizers and photocatalysts. Finally, priorities for future research are identified that will further our understanding of the key role that sunlight disinfection plays in natural systems and the potential to enhance this process in engineered systems

    Environmental Effects of Stratospheric Ozone Depletion, UV Radiation, and interactions with Climate Change: 2022 Assessment Report

    Get PDF
    The Montreal Protocol on Substances that Deplete the Ozone Layer was established 35 years ago following the 1985 Vienna Convention for protection of the environment and human health against excessive amounts of harmful ultraviolet-B (UV-B, 280-315 nm) radiation reaching the Earth’s surface due to a reduced UV-B-absorbing ozone layer. The Montreal Protocol, ratified globally by all 198 Parties (countries), controls ca 100 ozone-depleting substances (ODS). These substances have been used in many applications, such as in refrigerants, air conditioners, aerosol propellants, fumigants against pests, fire extinguishers, and foam materials. The Montreal Protocol has phased out nearly 99% of ODS, including ODS with high global warming potentials such as chlorofluorocarbons (CFC), thus serving a dual purpose. However, some of the replacements for ODS also have high global warming potentials, for example, the hydrofluorocarbons (HFCs). Several of these replacements have been added to the substances controlled by the Montreal Protocol. The HFCs are now being phased down under the Kigali Amendment. As of December 2022, 145 countries have signed the Kigali Amendment, exemplifying key additional outcomes of the Montreal Protocol, namely, that of also curbing climate warming and stimulating innovations to increase energy efficiency of cooling equipment used industrially as well as domestically. As the concentrations of ODS decline in the upper atmosphere, the stratospheric ozone layer is projected to recover to pre-1980 levels by the middle of the 21st century, assuming full compliance with the control measures of the Montreal Protocol. However, in the coming decades, the ozone layer will be increasingly influenced by emissions of greenhouse gases and ensuing global warming. These trends are highly likely to modify the amount of UV radiation reaching the Earth\u27s surface with implications for the effects on ecosystems and human health. Against this background, four Panels of experts were established in 1988 to support and advise the Parties to the Montreal Protocol with up-to-date information to facilitate decisions for protecting the stratospheric ozone layer. In 1990 the four Panels were consolidated into three, the Scientific Assessment Panel, the Environmental Effects Assessment Panel, and the Technology and Economic Assessment Panel. Every four years, each of the Panels provides their Quadrennial Assessments as well as a Synthesis Report that summarises the key findings of all the Panels. In the in-between years leading up to the quadrennial, the Panels continue to inform the Parties to the Montreal Protocol of new scientific information
    • …
    corecore