271 research outputs found

    Effect of Sucrose and Growth Regulator's Level on Ginger Micropropagation

    Full text link
    Ginger is most important cash crop of the hilly region of Nepal. However, availability of disease free planting material (rhizome) is the major problem faced by Nepalese farmers. Tissue culture is the only option to produce disease free rhizome of ginger. Suitable culture media combination is most important for the production of planting material in ginger through tissue culture. Therefore, effect of different level of sucrose and growth regulators on micro-propagation of ginger was studied using local collection ‘Kaski Local'. Early stage bud was used as explant. MS basal media with different level of sucrose and growth regulators was used as tissue culture media. 30 g/L sucrose, 30 g/L sucrose+5mg/L BA, 30 g/L sucrose+5 mg/L BA+0.5 mg/L NAA, 60 g/L sucrose+5mg/L BA, 60 g/L sucrose+5 mg/L BA+0.5mg/L NAA, 90 g/L sucrose+5 mg/L BA was used in this study. The explants were surface sterilized, cultured and incubated at 25±2°C, 90-95% relative humidity and 14:10 hours light:dark photoperiod for 8 weeks. Increased level of the sucrose increased the rhizome weight, however, addition of NAA produced more positive effect for this. MS basal media with 60 g/L sucrose+5 mg/L BA+0.5 mg/L NAA produced higher rhizome weight.Journal of Nepal Agricultural Research Council Vol.3 2017: 45-4

    Adaptation to Variable Environments, Resilience to Climate Change: Investigating Land, Water and Settlement in Indus Northwest India

    Get PDF
    This paper explores the nature and dynamics of adaptation and resilience in the face of a diverse and varied environmental and ecological context using the case study of South Asia’s Indus Civilization (ca. 3000–1300 BC). Most early complex societies developed in regions where the climatic parameters faced by ancient subsistence farmers were varied but rain falls primarily in one season. In contrast, the Indus Civilization developed in a specific environmental context that spanned a very distinct environmental threshold, where winter and summer rainfall systems overlap. There is now evidence to show that this region was directly subject to climate change during the period when the Indus Civilization was at its height (ca. 2500–1900 BC). The Indus Civilization, therefore, provides a unique opportunity to understand how an ancient society coped with diverse and varied ecologies and change in the fundamental environmental parameters. This paper integrates research carried out as part of the Land, Water and Settlement project in northwest India between 2007 and 2014. Although coming from only one of the regions occupied by Indus populations, these data necessitate the reconsideration of several prevailing views about the Indus Civilization as a whole and invigorate discussion about human-environment interactions and their relationship to processes of cultural transformation

    Intensified summer monsoon and the urbanization of Indus Civilization in northwest India

    Get PDF
    Today the desert margins of northwest India are dry and unable to support large populations, but were densely occupied by the populations of the Indus Civilization during the middle to late Holocene. The hydroclimatic conditions under which Indus urbanization took place, which was marked by a period of expanded settlement into the Thar Desert margins, remains poorly understood. We measured the isotopic values (δ18O and δD) of gypsum hydration water in paleolake Karsandi sediments in northern Rajasthan to infer past changes in lake hydrology, which is sensitive to changing amounts of precipitation and evaporation. Our record reveals that relatively wet conditions prevailed at the northern edge of Rajasthan from ~5.1 ± 0.2 ka BP, during the beginning of the agricultural-based Early Harappan phase of the Indus Civilization. Monsoon rainfall intensified further between 5.0 and 4.4 ka BP, during the period when Indus urban centres developed in the western Thar Desert margin and on the plains of Haryana to its north. Drier conditions set in sometime after 4.4 ka BP, and by ~3.9 ka BP an eastward shift of populations had occurred. Our findings provide evidence that climate change was associated with both the expansion and contraction of Indus urbanism along the desert margin in northwest India

    Adaptation to Variable Environments, Resilience to Climate Change: Investigating Land, Water and Settlement in Indus Northwest India

    Get PDF
    This paper explores the nature and dynamics of adaptation and resilience in the face of a diverse and varied environmental and ecological context using the case study of South Asia’s Indus Civilization (ca. 3000–1300 BC). Most early complex societies developed in regions where the climatic parameters faced by ancient subsistence farmers were varied but rain falls primarily in one season. In contrast, the Indus Civilization developed in a specific environmental context that spanned a very distinct environmental threshold, where winter and summer rainfall systems overlap. There is now evidence to show that this region was directly subject to climate change during the period when the Indus Civilization was at its height (ca. 2500–1900 BC). The Indus Civilization, therefore, provides a unique opportunity to understand how an ancient society coped with diverse and varied ecologies and change in the fundamental environmental parameters. This paper integrates research carried out as part of the Land, Water and Settlement project in northwest India between 2007 and 2014. Although coming from only one of the regions occupied by Indus populations, these data necessitate the reconsideration of several prevailing views about the Indus Civilization as a whole and invigorate discussion about human-environment interactions and their relationship to processes of cultural transformation

    The ionospheric precursor to the 2011 march 11 earthquake as based on the Japan-pacific subionospheric VLF/LF network observation

    No full text
    By using the network observation of subionospheric VLF/LF signals in Japan and in Russia, we have found a significant ionospheric perturbation prior to the recent 2011 March 11 Japan earthquake (EQ) in the off-sea of the Tohoku area, which was an exceptionally huge plate-type EQ. A remarkable anomaly (with decrease in the nighttime amplitude and also with enhancement in dispersion) has been detected on March 5 and 6 on the propagation path from the NLK transmitter (Seattle, USA) to Chofu (together with Kochi and Kasugai), and also we have observed the corresponding VLF anomaly during a prolonged period of March 1–6, with minima in the nighttime amplitude on March 3 and 4 on the path from JJI transmitter (Miyazaki, Kyushu) to Kamchatka, Russia.Используя наблюдения распространения СДВ/ДВ-радиоволн над Тихим океаном на японской и российской сети станций, удалось обнаружить значительное возмущение ионосферы, предшествовавшее последнему мощному землетрясению в Японии 11.03.2011 г. Эпицентр землетрясения находился в море, в области Тохоку, а само событие относится к исключительно мощным землетрясениям, связанным с перемещением тектонических плит. Явно выраженная аномалия (уменьшение ночной амплитуды сигнала при увеличении ее дисперсии) была обнаружена 5 и 6 марта на трассе распространения от передатчика NLK (Сиэтл, США) к наблюдателю в Чофу, Япония (аналогичные явления – на трассах распространения в Кочи и Кацугаи). Аналогичная длительная аномалия в СДВ-распространении регистрировалась с 1 по 6 марта с минимальной ночной амплитудой 3 и 4 марта на трассе от передатчика JJI (Миязаки, Кюсю) до Камчатки, Россия.Використовуючи спостереження поширення СДВ/ДВ-радіохвиль над Тихим океаном на японській і російській мережі станцій, вдалося виявити значне збурення іоносфери, що сталося перед останнім потужним землетрусом у Японії 11.03.2011 р. Епіцентр землетрусу знаходився в морі, в області Тохоку, а сама подія відноситься до виключно потужних землетрусів, пов’язаних з переміщенням тектонічних плит. Явно виражена аномалія (зменшення нічної амплітуди сигналу при збільшенні її дисперсії) було виявлено 5 та 6 березня на трасі від передавача NLK (Сіетл, США) до спостерігача в Чофу, Японія (аналогічні явища – на трасах поширення до Кочі й Кацугаї). Аналогічну тривалу аномалію в СДВ-поширенні реєстрували з 1 по 6 березня з мінімальною нічною амплітудою 3 і 4 березня на трасі від передавача JJI (Міязакі, Кюсю) до Камчатки, Росія
    corecore