192 research outputs found
Incommensurate Mott Insulator in One-Dimensional Electron Systems close to Quarter Filling
A possibility of a metal-insulator transition in molecular conductors has
been studied for systems composed of donor molecules and fully ionized anions
with an incommensurate ratio close to 2:1 based on a one-dimensional extended
Hubbard model, where the donor carriers are slightly deviated from quarter
filling and under an incommensurate periodic potential from the anions. By use
of the renormalization group method, interplay between commensurability energy
on the donor lattice and that from the anion potential has been studied and it
has been found that an "incommensurate Mott insulator" can be generated. This
theoretical finding will explain the metal-insulator transition observed in
(MDT-TS)(AuI).Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jpn. at December 24
200
Single crystal field-effect transistors based on an organic selenium-containing semiconductor
We report on the fabrication and characterization of single crystal
field-effect transistors (FETs) based on diphenylbenzo diselenophene
(DPh-BDSe). These organic field-effect transistors (OFETs) function as
p-channel accumulation-mode devices. At room temperature, for the best devices,
the threshold voltage is less than -7V and charge carrier mobility is nearly
gate bias independent, ranging from 1cm2/Vs to 1.5 cm2/Vs depending on the
source-drain bias. Mobility is increased slightly by cooling below room
temperature and decreases below 280 K
Strong Suppression of Thermal Conductivity in the Presence of Long Terminal Alkyl Chains in Low-Disorder Molecular Semiconductors
While the charge transport properties of organic semiconductors have been extensively studied over the recent years, the field of organics-based thermoelectrics is still limited by a lack of experimental data on thermal transport and of understanding of the associated structure–property relationships. To fill this gap, a comprehensive experimental and theoretical investigation of the lattice thermal conductivity in polycrystalline thin films of dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (Cn-DNTT-Cn with n = 0, 8) semiconductors is reported. Strikingly, thermal conductivity appears to be much more isotropic than charge transport, which is confined to the 2D molecular layers. A direct comparison between experimental measurements (3ω–Völklein method) and theoretical estimations (approach-to-equilibrium molecular dynamics (AEMD) method) indicates that the in-plane thermal conductivity is strongly reduced in the presence of the long terminal alkyl chains. This evolution can be rationalized by the strong localization of the intermolecular vibrational modes in C8-DNTT-C8 in comparison to unsubstituted DNTT cores, as evidenced by a vibrational mode analysis. Combined with the enhanced charge transport properties of alkylated DNTT systems, this opens the possibility to decouple electron and phonon transport in these materials, which provides great potential for enhancing the thermoelectric figure of merit ZT
Se NMR evidence for the Jaccarino-Peter mechanism in the field induced superconductor, (BETS)FeCl}
We have performed Se NMR on a single crystal sample of the field
induced superconductor -(BETS)FeCl. Our results obtained
in the paramagnetic state provide a microscopic insight on the exchange
interaction between the spins \textbf{s} of the BETS conduction
electrons and the Fe localized spins \textbf{S}. The absolute value of the
Knight shift \textbf{K} decreases when the polarization of the Fe spins
increases. This reflects the ``negative'' spin polarization of the
electrons through the exchange interaction . The value of has been
estimated from the temperature and the magnetic field dependence of \textbf{K}
and found in good agreement with that deduced from transport measurements (L.
Balicas \textit{et al}. Phys. Rev. Lett. \textbf{87}, 067002 (2001)). This
provides a direct microscopic evidence that the field induced superconductivity
is due to the compensation effect predicted by Jaccarino and Peter (Phys. Rev.
Lett. \textbf{9}, 290 (1962)). Furthermore, an anomalous broadening of the NMR
line has been observed at low temperature, which suggests the existence of
charge disproportionation in the metallic state neighboring the superconducting
phase
Reversible Dimerization/Polymerization of a Janus Diradical Producing Labile CC Bonds and Giant Chromism
En esta comunicación se presenta el estudio espectroscópico y téorico de la dimerización/oligomerización reversible de un birradical derivado de naftoditiofeno el cual en su forma monomérica presenta una intenso color azul mientras que al agregar se muestra incoloro, siendo éstas formas intercambiables gracias a la aplicación de estímulos débiles como presión o temperatura.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Theoretical Aspects of Charge Ordering in Molecular Conductors
Theoretical studies on charge ordering phenomena in quarter-filled molecular
(organic) conductors are reviewed. Extended Hubbard models including not only
the on-site but also the inter-site Coulomb repulsion are constructed in a
straightforward way from the crystal structures, which serve for individual
study on each material as well as for their systematic understandings. In
general the inter-site Coulomb interaction stabilizes Wigner crystal-type
charge ordered states, where the charge localizes in an arranged manner
avoiding each other, and can drive the system insulating. The variety in the
lattice structures, represented by anisotropic networks in not only the
electron hopping but also in the inter-site Coulomb repulsion, brings about
diverse problems in low-dimensional strongly correlated systems. Competitions
and/or co-existences between the charge ordered state and other states are
discussed, such as metal, superconductor, and the dimer-type Mott insulating
state which is another typical insulating state in molecular conductors.
Interplay with magnetism, e.g., antiferromagnetic state and spin gapped state
for example due to the spin-Peierls transition, is considered as well. Distinct
situations are pointed out: influences of the coupling to the lattice degree of
freedom and effects of geometrical frustration which exists in many molecular
crystals. Some related topics, such as charge order in transition metal oxides
and its role in new molecular conductors, are briefly remarked.Comment: 21 pages, 19 figures, to be published in J. Phys. Soc. Jpn. special
issue on "Organic Conductors"; figs. 4 and 11 replaced with smaller sized
fil
Tuning the effective spin-orbit coupling in molecular semiconductors
The control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven difficult due to competing relaxation mechanisms. Here we present a systematic study of the g-tensor shift in molecular semiconductors and link it directly to the SOC strength in a series of high-mobility molecular semiconductors with strong potential for future devices. The results demonstrate a rich variability of the molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We correlate the above g-shifts to spin-lattice relaxation times over four orders of magnitude, from 200 to 0.15 μs, for isolated molecules in solution and relate our findings for isolated molecules in solution to the spin relaxation mechanisms that are likely to be relevant in solid state systems.S.S. thanks the Winton Programme for the Physics of Sustainability, the Engineering and Physical Sciences Research Council (EPSRC), C. Daniel Frisbie for supplying d28-rubrene and Shin-ichi Kuroda for useful discussions. Funding from the Alexander von Humboldt Foundation, ERC Synergy Grant SC2 (No. 610115), and the Transregional Collaborative Research Center (SFB/TRR) 173 SPIN+X is acknowledged
From computational discovery to experimental characterization of a high hole mobility organic crystal
For organic semiconductors to find ubiquitous electronics applications, the development of new materials with high mobility and air stability is critical. Despite the versatility of carbon, exploratory chemical synthesis in the vast chemical space can be hindered by synthetic and characterization difficulties. Here we show that in silico screening of novel derivatives of the dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene semiconductor with high hole mobility and air stability can lead to the discovery of a new high-performance semiconductor. On the basis of estimates from the Marcus theory of charge transfer rates, we identified a novel compound expected to demonstrate a theoretic twofold improvement in mobility over the parent molecule. Synthetic and electrical characterization of the compound is reported with single-crystal field-effect transistors, showing a remarkable saturation and linear mobility of 12.3 and 16 cm2 V−1 s−1, respectively. This is one of the very few organic semiconductors with mobility greater than 10 cm2 V−1 s−1 reported to date
Very Strong Binding for a Neutral Calix[4]pyrrole Receptor Displaying Positive Allosteric Binding
The dual-analyte responsive behavior of tetraTTF-calix[4]pyrrole receptor 1 has been shown to complex electron-deficient planar guests in a 2:1 fashion by adopting a so-called 1,3-alternate conformation. However, stronger 1:1 complexes have been demonstrated with tetraalkylammonium halide salts that defer receptor 1 to its cone conformation. Herein, we report the complexation of an electron-deficient planar guest, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA, 2) that champions the complexation with 1, resulting in a high association constant Ka = 3 × 1010 M–2. The tetrathiafulvalene (TTF) subunits in the tetraTTF-calix[4]pyrrole receptor 1 present a near perfect shape and electronic complementarity to the NTCDA guest, which was confirmed by X-ray crystal structure analysis, DFT calculations, and electron density surface mapping. Moreover, the complexation of these species results in the formation of a charge transfer complex (22⊂1) as visualized by a readily apparent color change from yellow to brown
A Practical, One-Pot Synthesis of Highly Substituted Thiophenes and Benzo[b]thiophenes from Bromoenynes and o-Alkynylbromobenzenes
An efficient synthesis of thiophenes and benzo[b]thiophenes has been developed from easily available bromoenynes and o-alkynylbromobenzene derivatives. This novel one-pot procedure involves a Pd-catalyzed C–S bond formation using a hydrogen sulfide surrogate followed by a heterocyclization reaction. Moreover, in situ functionalization with selected electrophiles further expands the potential of this methodology to the preparation of the corresponding highly substituted sulfur heterocycles.Junta de Castilla y Leon (BU021A09 and GR-172) and Ministerio de Ciencia e Innovacion (MICINN) and FEDER (CTQ2010-15358 and CTQ2009-09949/BQU) for financial support. P.G.-G. and M.A.F.-R. thank MICINN for "Juan de la Cierva" and "Ramon y Cajal" contractsJunta de Castilla y Leon (BU021A09 and GR-172) and Ministerio de Ciencia e Innovacion (MICINN) and FEDER (CTQ2010-15358 and CTQ2009-09949/BQU) for financial support. P.G.-G. and M.A.F.-R. thank MICINN for "Juan de la Cierva" and "Ramon y Cajal" contractsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in
Organic Letters, copyright © American Chemical Society after peer review and technical editing by the publisher
- …