27 research outputs found

    Dust Transport to the Taylor Glacier, Antarctica, During the Last Interglacial

    Full text link
    Changes in the composition of dust trapped in ice provide evidence of past atmospheric circulation and earth surface conditions. Investigations of dust provenance in Antarctic ice during glacial and interglacial periods indicate that South America is the primary dust source during both climate regimes. Here, we present results from a new ice core dust archive extracted from the Taylor Glacier in coastal East Antarctica during the deglacial transition from Marine Isotope Stage 6 to 5e. Radiogenic strontium and neodymium isotopes indicate that last interglacial dust is young and volcanic, in contrast to the observed preindustrial and Holocene (Marine Isotope Stage 1) dust composition. The dust composition differences from the last interglacial and current interglacial period at the site require a profound difference in atmospheric transport and environmental conditions. We consider several potential causes for enhanced transport of volcanic material to the site, including increased availability of volcanic material and large‐scale atmospheric circulation changes.Plain Language SummaryFluctuations in the isotopic composition of dust particles transported atmospherically and trapped in East Antarctic ice during glacial and interglacial periods provide glimpses into past earth surface conditions and atmospheric dynamics through time. Here we present new ice core records of dust from the Taylor Glacier (Antarctica), extending back to the transition into the last interglacial period (~130,000 years ago). Dust deposited at this site during the last interglacial period has a significantly more volcanic dust composition compared to the current interglacial dust, caused by a pronounced wind direction change and/or increased subaerial exposure of volcanic material. The distinct dust compositions during two separate interglacial periods suggest significant differences in conditions at the dust source areas and atmospheric dynamics to this peripheral Antarctic site.Key PointsLast interglacial dust composition in Taylor Glacier ice is distinct from MIS 1 recordSr and Nd isotope signatures indicate a young volcanic sourceGeochemical data suggest a change in provenance and atmospheric circulation between MIS 5e and MIS 1Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148354/1/grl58638_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148354/2/grl58638.pd

    The influence of the synoptic regime on stable water isotopes in precipitation at Dome C, East Antarctica

    Get PDF
    Abstract. The correct derivation of paleotemperatures from ice cores requires exact knowledge of all processes involved before and after the deposition of snow and the subsequent formation of ice. At the Antarctic deep ice core drilling site Dome C, a unique data set of daily precipitation amount, type, and stable water isotope ratios is available that enables us to study in detail atmospheric processes that influence the stable water isotope ratio of precipitation. Meteorological data from both automatic weather station and a mesoscale atmospheric model were used to investigate how different atmospheric flow patterns determine the precipitation parameters. A classification of synoptic situations that cause precipitation at Dome C was established and, together with back-trajectory calculations, was utilized to estimate moisture source areas. With the resulting source area conditions (wind speed, sea surface temperature, and relative humidity) as input, the precipitation stable isotopic composition was modeled using the so-called Mixed Cloud Isotope Model (MCIM). The model generally underestimates the depletion of 18O in precipitation, which was not improved by using condensation temperature rather than inversion temperature. Contrary to the assumption widely used in ice core studies, a more northern moisture source does not necessarily mean stronger isotopic fractionation. This is due to the fact that snowfall events at Dome C are often associated with warm air advection due to amplification of planetary waves, which considerably increases the site temperature and thus reduces the temperature difference between source area and deposition site. In addition, no correlation was found between relative humidity at the moisture source and the deuterium excess in precipitation. The significant difference in the isotopic signal of hoarfrost and diamond dust was shown to disappear after removal of seasonality. This study confirms the results of an earlier study carried out at Dome Fuji with a shorter data set using the same methods

    Molecular insights into RmcA-mediated c-di-GMP consumption: Linking redox potential to biofilm morphogenesis in Pseudomonas aeruginosa

    Get PDF
    The ability of many bacteria to form biofilms contributes to their resilience and makes infections more difficult to treat. Biofilm growth leads to the formation of internal oxygen gradients, creating hypoxic subzones where cellular reducing power accumulates, and metabolic activities can be limited. The pathogen Pseudomonas aeruginosa counteracts the redox imbalance in the hypoxic biofilm subzones by producing redox-active electron shuttles (phenazines) and by secreting extracellular matrix, leading to an increased surface area-to-volume ratio, which favors gas exchange. Matrix production is regulated by the second messenger bis-(3′,5′)-cyclic-dimeric-guanosine monophosphate (c-di-GMP) in response to different environmental cues. RmcA (Redox modulator of c-di-GMP) from P. aeruginosa is a multidomain phosphodiesterase (PDE) that modulates c-di-GMP levels in response to phenazine availability. RmcA can also sense the fermentable carbon source arginine via a periplasmic domain, which is linked via a transmembrane domain to four cytoplasmic Per-Arnt-Sim (PAS) domains followed by a diguanylate cyclase (DGC) and a PDE domain. The biochemical characterization of the cytoplasmic portion of RmcA reported in this work shows that the PAS domain adjacent to the catalytic domain tunes RmcA PDE activity in a redox-dependent manner, by differentially controlling protein conformation in response to FAD or FADH2. This redox-dependent mechanism likely links the redox state of phenazines (via FAD/FADH2 ratio) to matrix production as indicated by a hyperwrinkling phenotype in a macrocolony biofilm assay. This study provides insights into the role of RmcA in transducing cellular redox information into a structural response of the biofilm at the population level. Conditions of resource (i.e. oxygen and nutrient) limitation arise during chronic infection, affecting the cellular redox state and promoting antibiotic tolerance. An understanding of the molecular linkages between condition sensing and biofilm structure is therefore of crucial importance from both biological and engineering standpoints.The authors would like to acknowledge Sapienza University of Rome [RM120172A7AD98EB to SR, RM1221815D52AB32 to APaiardini and AR12117A63EE6037; AR2221816C44C7B3 to CSR] for financial support. AUC experiments have received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101004806. We thank Patrick England of the Plateforme de Biophysique Moléculaire of the C2RT (Institut Pasteur) for fruitful discussion

    Sea salt sodium record from Talos Dome (East Antarctica) as a potential proxy of the Antarctic past sea ice extent

    Get PDF
    Antarctic sea ice has shown an increasing trend in recent decades, but with strong regional differences from one sector to another of the Southern Ocean. The Ross Sea and the Indian sectors have seen an increase in sea ice during the satellite era (1979 onwards). Here we present a record of ssNa+ flux in the Talos Dome region during a 25-year period spanning from 1979 to 2003, showing that this marker could be used as a potential proxy for reconstructing the sea ice extent in the Ross Sea and Western Pacific Ocean at least for recent decades. After finding a positive relationship between the maxima in sea ice extent for a 25-year period, we used this relationship in the TALDICE record in order to reconstruct the sea ice conditions over the 20th century. Our tentative reconstruction highlighted a decline in the sea ice extent (SIE) starting in the 1950s and pointed out a higher variability of SIE starting from the 1960s and that the largest sea ice extents of the last century occurred during the 1990s

    The relative timing between eye and hand rapid sequential pointing is affected by time pressure, but not by advance knowledge

    Get PDF
    The present study examined the effect of timing constraints and advance knowledge on eye-hand coordination strategy in a sequential pointing task. Participants were required to point at two successively appearing targets on a screen while the inter-stimulus interval (ISI) and the trial order were manipulated, such that timing constraints were high (ISI = 300 ms) or low (ISI = 450 ms) and advance knowledge of the target location was present (fixed order) or absent (random order). Analysis of eye and finger onset and completion times per segment of the sequence indicated that oculo-manual behaviour was in general characterized by eye movements preceding the finger, as well as 'gaze anchoring' (i.e. eye fixation of the first target until completion of the finger movement towards that target). Advance knowledge of future target locations lead to shorter latency times of eye and hand, and smaller eye-hand lead times, which in combination resulted in shorter total movement times. There was, however, no effect of advance knowledge on the duration of gaze anchoring. In contrast, gaze anchoring did change as a function of the interval between successive stimuli and was shorter with a 300 ms ISI versus 450 ms ISI. Further correlation analysis provided some indication that shorter residual latency is associated with shorter pointing duration, without affecting accuracy. These results are consistent with a neural mechanism governing the coupling of eye and arm movements, which has been suggested to reside in the superior colliculus. The temporal coordination resulting from this coupling is a function of the time pressure on the visuo-manual system resulting from the appearance of external stimuli

    The oculomanual coordination control center takes into account the mechanical properties of the arm

    No full text
    International audienceWhen the eyes and arm are involved in a tracking task, the characteristics of each system differ from those observed when they act alone: smooth pursuit (SP) latency decreases from 130 ms in external target tracking tasks to 0 ms in self-moved target tracking tasks. Two models have been proposed to explain this coordination. The common command model suggests that the same command be addressed to the two sensorimotor systems, which are otherwise organized in parallel, while the coordination control model proposes that coordination is due to a mutual exchange of information between the motor systems. In both cases, the interaction should take into account the dynamic differences between the two systems. However, the nature of the adaptation depends on the model. During self-moved target tracking a perturbation was applied to the arm through the use of an electromagnetic brake. A randomized perturbation of the arm increased the arm motor reaction time without affecting SP. In contrast, a constant perturbation produced an adaptation of the coordination control characterized by a decrease in arm latency and an increase in SP latency relative to motor command. This brought the arm-to-SP latency back to 0 ms. These results support the coordination control model

    Does the oculo-manual co-ordination control system use an internal model of the arm dynamics?

    No full text
    International audienceThe hypothesis that during self-moved target tracking, the eye-arm co-ordination control system uses an internal model of the arm dynamics was tested. The contribution of arm proprioception to this model was also assessed. Subjects (nine healthy adults and one deafferented subject) were requested to make forearm movements and visually track an arm-driven target. Unexpected changes in mechanical properties of the manipulandum were used to modify the dynamical conditions of arm movement, The smooth pursuit gain (SPG) was computed before and du ri ng the perturbation. Results showed a decrease of SPG during perturbation in control subjects only. We propose that an internal model of the arm dynamics may be used to co-ordinate eye and arm movements, and arm proprioception may contribute to this internal model. (C) 1999 Elsevier Science Ireland Ltd. All rights reserved

    Effects of reflectivity gradients of radar polarimetetric measurements

    No full text
    Collaboration research program between: The Radar Meteorology Group, IFA, CNR (Italy) and the Department of Electrical Engineering, The Pensylvania State University, USASIGLEITItal
    corecore