46 research outputs found

    Prospective study of daily low-dose nedaplatin and continuous 5-fluorouracil infusion combined with radiation for the treatment of esophageal squamous cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protracted low-dose concurrent chemotherapy combined with radiation has been proposed for enhanced treatment results for esophageal cancer. We evaluated the efficacy and the toxicity of a novel regimen of daily low-dose nedaplatin (cis-diammine-glycolatoplatinum) and continuous infusion of 5-fluorouracil (5-FU) with radiation in patients with esophageal squamous cell carcinoma.</p> <p>Methods</p> <p>Between January 2003 and June 2008, 33 patients with clinical stage I to IVB esophageal squamous cell carcinoma were enrolled. Nedaplatin (10 mg/body/day) was administered daily and 5-FU (500 mg/body/day) was administered continuously for 20 days. Fractionated radiotherapy for a total dose of 50.4-66 Gy was administered together with chemotherapy. Additional chemotherapy with nedaplatin and 5-FU was optionally performed for a maximum of 5 courses after chemoradiotherapy. The primary end-point of this study was to evaluate the tumor response, and the secondary end-points were to evaluate the toxicity and the overall survival.</p> <p>Results</p> <p>Twenty-two patients (72.7%) completed the regimen of chemoradiotherapy. Twenty patients (60.6%) achieved a complete response, 10 patients (30.3%) a partial response. One patient (3.0%) had a stable disease, and 2 (6.1%) a progressive disease. The overall response rate was 90.9% (95% confidence interval: 75.7%-98.1%). For grade 3-4 toxicity, leukopenia was observed in 75.8% of the cases, thrombocytopenia in 24.2%, anemia in 9.1%, and esophagitis in 36.4%, while late grade 3-4 cardiac toxicity occurred in 6.1%. Additional chemotherapy was performed for 26 patients (78.8%) and the median number of courses was 3 (range, 1-5). The 1-, 2- and 3-year survival rates were 83.9%, 76.0% and 58.8%, respectively. The 1- and 2-year survival rates were 94.7% and 88.4% in patients with T1-3 M0 disease, and 66.2% and 55.2% in patients with T4/M1 disease.</p> <p>Conclusion</p> <p>The treatment used in our study may yield a high complete response rate and better survival for each stage of esophageal squamous cell carcinoma.</p> <p>Trial registration</p> <p>ClinicalTrials.gov Identifier: NCT00197444</p

    Do pharmacokinetic polymorphisms explain treatment failure in high-risk patients with neuroblastoma?

    Full text link

    Systematic review with meta-analysis of the epidemiological evidence relating smoking to COPD, chronic bronchitis and emphysema

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Smoking is a known cause of the outcomes COPD, chronic bronchitis (CB) and emphysema, but no previous systematic review exists. We summarize evidence for various smoking indices.</p> <p>Methods</p> <p>Based on MEDLINE searches and other sources we obtained papers published to 2006 describing epidemiological studies relating incidence or prevalence of these outcomes to smoking. Studies in children or adolescents, or in populations at high respiratory disease risk or with co-existing diseases were excluded. Study-specific data were extracted on design, exposures and outcomes considered, and confounder adjustment. For each outcome RRs/ORs and 95% CIs were extracted for ever, current and ex smoking and various dose response indices, and meta-analyses and meta-regressions conducted to determine how relationships were modified by various study and RR characteristics.</p> <p>Results</p> <p>Of 218 studies identified, 133 provide data for COPD, 101 for CB and 28 for emphysema. RR estimates are markedly heterogeneous. Based on random-effects meta-analyses of most-adjusted RR/ORs, estimates are elevated for ever smoking (COPD 2.89, CI 2.63-3.17, n = 129 RRs; CB 2.69, 2.50-2.90, n = 114; emphysema 4.51, 3.38-6.02, n = 28), current smoking (COPD 3.51, 3.08-3.99; CB 3.41, 3.13-3.72; emphysema 4.87, 2.83-8.41) and ex smoking (COPD 2.35, 2.11-2.63; CB 1.63, 1.50-1.78; emphysema 3.52, 2.51-4.94). For COPD, RRs are higher for males, for studies conducted in North America, for cigarette smoking rather than any product smoking, and where the unexposed base is never smoking any product, and are markedly lower when asthma is included in the COPD definition. Variations by sex, continent, smoking product and unexposed group are in the same direction for CB, but less clearly demonstrated. For all outcomes RRs are higher when based on mortality, and for COPD are markedly lower when based on lung function. For all outcomes, risk increases with amount smoked and pack-years. Limited data show risk decreases with increasing starting age for COPD and CB and with increasing quitting duration for COPD. No clear relationship is seen with duration of smoking.</p> <p>Conclusions</p> <p>The results confirm and quantify the causal relationships with smoking.</p

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Community recommendations on cryoEM data archiving and validation

    Get PDF
    In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for the deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop’s motivation and history, the topics discussed, and the resulting consensus recommendations. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.The workshop was supported by funding to PDBe and EMDB by the Wellcome Trust (grant No. 104948/Z/14/Z awarded to GJK, SV and AP) and by the European Molecular Biology Laboratory. Travel was supported by the PDBe, EMDB, RCSB PDB, PDBj, BMRB and EMDR. RCSB PDB is jointly funded by the National Science Foundation (grant No. DBI1832184); the US Department of Energy (grant No. DESC0019749); and the National Cancer Institute, National Institute of Allergy and Infectious Diseases, and National Institute of General Medical Sciences of the National Institutes of Health (grant No. R01GM133198). PDBj is funded by JST-NBDC and BMRB by the National Institute of General Medical Sciences (NIGMS) of the National Institutes of Health (NIH) (grant No. R24GM150793). EMDR was funded by the NIGMS of the NIH (grant No. R01GM079429).Peer reviewe

    Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network

    Get PDF
    Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism

    Recent Perspectives in Ocular Drug Delivery

    Full text link
    corecore