8,312 research outputs found
Halving the Casimir force with conductive oxides
The possibility to modify the strength of the Casimir effect by tailoring the
dielectric functions of the interacting surfaces is regarded as a unique
opportunity in the development of Micro- and NanoElectroMechanical Systems. In
air, however, one expects that, unless noble metals are used, the electrostatic
force arising from trapped charges overcomes the Casimir attraction, leaving no
room for exploitation of Casimir force engineering at ambient conditions. Here
we show that, in the presence of a conductive oxide, the Casimir force can be
the dominant interaction even in air, and that the use of conductive oxides
allows one to reduce the Casimir force up to a factor of 2 when compared to
noble metals.Comment: modified version, accepted for publication in Phys Rev Let
The analytical discussion on strong gravitaional lensing for a gravitational source with a global monopole
Here the gravitational lensing in strong field limit of a Schwarzschild black
hole with a solid deficit angle owing to global monopole within the context of
the gravity theory is investigated. We obtain the expressions of
deflection angle and time delay in the forms of elliptic integrals and discuss
the asymptotic behaviour of the elliptic integrals to find the explicit
formulae of angle and time difference in the strong field limit. We show that
the deflection angle and the time delay between multiple images are related not
only to the monopole but also to the correction by taking the
cosmological boundary into account. Some observables such as the minimum impact
parameter, the angular separation, the relative magnification and the compacted
angular position have been estimated as well. It is intriguing that the tiny
modification on the standard general relativity will make the remarkable
deviation on the angle and the time lag, offering a significant way to explore
some possible distinct signatures of the topological soliton and the correction
of the Einstein general relativity.Comment: 11 pages, 5 figures. arXiv admin note: text overlap with
arXiv:1004.342
No anomalous scaling in electrostatic calibrations for Casimir force measurements
In a recent paper (Phys.Rev.A78, 020101(R) (2008)), Kim at al. have reported
a large anomaly in the scaling law of the electrostatic interaction between a
sphere and a plate, which was observed during the calibration of their Casimir
force set-up. Here we experimentally demonstrate that in proper electrostatic
calibrations the scaling law follows the behavior expected from elementary
electrostatic arguments, even when the electrostatic voltage that one must
apply to minimize the force (typically ascribed to contact potentials) depends
on the separation between the surfaces.Comment: Final versio
Fiber-top atomic force microscope
We present the implementation of an atomic force microscope (AFM) based on fiber-top design. Our results demonstrate that the performances of fiber-top AFMs in contact mode are comparable to those of similar commercially available instruments. Our device thus represents an interesting\ud
alternative to existing AFMs, particularly for applications outside specialized research laboratories, where a compact, user-friendly, and versatile tool might often be preferred
Record high peaks in PCB concentrations in the Arctic atmosphere due to long-range transport of biomass burning emissions
International audienceSoils and forests in the boreal region of the Northern Hemisphere are recognised as having a large capacity for storing air-borne Persistent Organic Pollutants (POPs), such as the polychlorinated biphenyls (PCBs). Following reductions of primary emissions of various legacy POPs, there is an increasing interest and debate about the relative importance of secondary re-emissions on the atmospheric levels of POPs. In spring of 2006, biomass burning emissions from agricultural fires in Eastern Europe were transported to the Zeppelin station on Svalbard, where record-high levels of many air pollutants were recorded (Stohl et al., 2007). Here we report on the extremely high concentrations of PCBs that were also measured during this period. 21 out of 32 PCB congeners were enhanced by more than two standard deviations above the long-term mean concentrations. In July 2004, about 5.8 million hectare of boreal forest burned in North America, emitting a pollution plume which reached the Zeppelin station after a travel time of 3?4 weeks (Stohl et al., 2006). Again, 12 PCB congeners were elevated above the long-term mean by more than two standard deviations, with the less chlorinated congeners being most strongly affected. We propose that these abnormally high concentrations were caused by biomass burning emissions. Based on enhancement ratios with carbon monoxide and known emissions factors for this species, we estimate that 130 and 66 ?g PCBs were released per kilogram dry matter burned, respectively. To our knowledge, this is the first study relating atmospheric PCB enhancements with biomass burning. The strong effects on observed concentrations far away from the sources, suggest that biomass burning is an important source of PCBs for the atmosphere
Parametrical optimization of laser surface alloyed NiTi shape memory alloy with Co and Nb by the Taguchi method
Different high-purity metal powders were successfully alloyed on to a nickel titanium (NiTi) shape memory alloy (SMA) with a 3 kW carbon dioxide (CO2) laser system. In order to produce an alloyed layer with complete penetration and acceptable composition profile, the Taguchi approach was used as a statistical technique for optimizing selected laser processing parameters. A systematic study of laser power, scanning velocity, and pre-paste powder thickness was conducted. The signal-to-noise ratios (S/N) for each control factor were calculated in order to assess the deviation from the average response. Analysis of variance (ANOVA) was carried out to understand the significance of process variables affecting the process effects. The Taguchi method was able to determine the laser process parameters for the laser surface alloying technique with high statistical accuracy and yield a laser surface alloying technique capable of achieving a desirable dilution ratio. Energy dispersive spectrometry consistently showed that the per cent by weight of Ni was reduced by 45 per cent as compared with untreated NiTi SMA when the Taguchi-determined laser processing parameters were employed, thus verifying the laser's processing parameters as optimum
High-Q nested resonator in an actively stabilized optomechanical cavity
Experiments involving micro- and nanomechanical resonators need to be
carefully designed to reduce mechanical environmental noise. A small scale
on-chip approach is to add an additional resonator to the system as a
mechanical low-pass filter. Unfortunately, the inherent low frequency of the
low-pass filter causes the system to be easily excited mechanically. Fixating
the additional resonator ensures that the resonator itself can not be excited
by the environment. This, however, negates the purpose of the low-pass filter.
We solve this apparent paradox by applying active feedback to the resonator,
thereby minimizing the motion with respect the front mirror of an
optomechanical cavity. Not only does this method actively stabilize the cavity
length, but it also retains the on-chip vibration isolation.Comment: Minor adjustments mad
Sub-millimeter galaxies as progenitors of compact quiescent galaxies
Three billion years after the big bang (at redshift z=2), half of the most
massive galaxies were already old, quiescent systems with little to no residual
star formation and extremely compact with stellar mass densities at least an
order of magnitude larger than in low redshift ellipticals, their descendants.
Little is known about how they formed, but their evolved, dense stellar
populations suggest formation within intense, compact starbursts 1-2 Gyr
earlier (at 3<z<6). Simulations show that gas-rich major mergers can give rise
to such starbursts which produce dense remnants. Sub-millimeter selected
galaxies (SMGs) are prime examples of intense, gas-rich, starbursts. With a
new, representative spectroscopic sample of compact quiescent galaxies at z=2
and a statistically well-understood sample of SMGs, we show that z=3-6 SMGs are
consistent with being the progenitors of z=2 quiescent galaxies, matching their
formation redshifts and their distributions of sizes, stellar masses and
internal velocities. Assuming an evolutionary connection, their space densities
also match if the mean duty cycle of SMG starbursts is 42 (+40/-29) Myr
(consistent with independent estimates), which indicates that the bulk of stars
in these massive galaxies were formed in a major, early surge of
star-formation. These results suggests a coherent picture of the formation
history of the most massive galaxies in the universe, from their initial burst
of violent star-formation through their appearance as high stellar-density
galaxy cores and to their ultimate fate as giant ellipticals.Comment: ApJ (in press
Monoamine Oxidase A (MAOA) Gene and Personality Traits from Late Adolescence through Early Adulthood: A Latent Variable Investigation.
Very few molecular genetic studies of personality traits have used longitudinal phenotypic data, therefore molecular basis for developmental change and stability of personality remains to be explored. We examined the role of the monoamine oxidase A gene (MAOA) on extraversion and neuroticism from adolescence to adulthood, using modern latent variable methods. A sample of 1,160 male and 1,180 female participants with complete genotyping data was drawn from a British national birth cohort, the MRC National Survey of Health and Development (NSHD). The predictor variable was based on a latent variable representing genetic variations of the MAOA gene measured by three SNPs (rs3788862, rs5906957, and rs979606). Latent phenotype variables were constructed using psychometric methods to represent cross-sectional and longitudinal phenotypes of extraversion and neuroticism measured at ages 16 and 26. In males, the MAOA genetic latent variable (AAG) was associated with lower extraversion score at age 16 (β = -0.167; CI: -0.289, -0.045; p = 0.007, FDRp = 0.042), as well as greater increase in extraversion score from 16 to 26 years (β = 0.197; CI: 0.067, 0.328; p = 0.003, FDRp = 0.036). No genetic association was found for neuroticism after adjustment for multiple testing. Although, we did not find statistically significant associations after multiple testing correction in females, this result needs to be interpreted with caution due to issues related to x-inactivation in females. The latent variable method is an effective way of modeling phenotype- and genetic-based variances and may therefore improve the methodology of molecular genetic studies of complex psychological traits
- …