182 research outputs found

    Dynamic features of successive upwelling events in the Baltic Sea - a numerical case study

    Get PDF
    Coastal upwelling often reveals itself during the thermal stratification season as an abrupt sea surface temperature (SST) drop. Its intensity depends not only on the magnitude of an upwelling-favourable wind impulse but also on the temperature stratification of the water column during the initial stage of the event. When a "chain" of upwelling events is taking place, one event may play a part in forming the initial stratification for the next one; consequently, SST may drop significantly even with a reduced wind impulse. Two upwelling events were simulated on the Polish coast in August 1996 using a three-dimensional, baroclinic prognostic model. The model results proved to be in good agreement with in situ observations and satellite data. Comparison of the simulated upwelling events show that the first one required a wind impulse of 28000 kg m-1 s-1 to reach its mature, full form, whereas an impulse of only 7500 kg m-1 s-1 was sufficient to bring about a significant drop in SST at the end of the second event. In practical applications like operational modelling, the initial stratification conditions prior to an upwelling event should be described with care in order to be able to simulate the coming event with very good accuracy

    Upwelling in the Baltic Sea - a review

    Get PDF
    Upwelling is a typical phenomenon of the Baltic Sea. Because the Baltic Sea is a semi- enclosed basin, winds from favorable directions blowing predominately parallel to the coast cause upwelling leading to vertical displacement of the water body and mixing. During the thermal stratified period, upwelling can lead to a strong sea-surface temperature drop of more than 10 °C changing drastically the thermal balance and stability conditions at the sea-surface. Upwelling can play a key role in replenishing the euphotic zone with the nutritional components necessary for biological productivity when the surface layer is depleted of nutrients. Consequently, it has been found out that in such areas where upwelling lifts phosphorus-rich deep water to the surface, the N/P ratio becomes low which favors the blooming of nitrogen-fixing blue-green algae. The rapid temperature decrease during such events was recognized and documented a long time ago when temperature measurements became available. Thus, the study of the upwelling process has a long tradition. However, although the importance of upwelling has generally been accepted for the Baltic Sea, no general review of upwelling exists. The objective of this paper is a comprehensive review of the upwelling process, its dynamics and reflections to ecosystem processes in the Baltic Sea using all relevant literature which will help to close the gaps of present knowledge and some recommendations for future work are outlined accordingly

    Progress in physical oceanography of the Baltic Sea during the 2003-2014 period

    Get PDF
    We review progress in Baltic Sea physical oceanography (including sea ice and atmosphere-land interactions) and Baltic Sea modelling, focusing on research related to BALTEX Phase II and other relevant work during the 2003-2014 period. The major advances achieved in this period are: Meteorological databases are now available to the research community, partly as station data, with a growing number of freely available gridded datasets on decadal and centennial time scales. The free availability of meteorological datasets supports the development of more accurate forcing functions for Baltic Sea models. In the last decade, oceanographic data have become much more accessible and new important measurement platforms, such as FerryBoxes and satellites, have provided better temporally and spatially resolved observations. Our understanding of how large-scale atmospheric circulation affects the Baltic Sea climate, particularly in winter, has improved. Internal variability is strong illustrating the dominant stochastic behaviour of the atmosphere. The heat and water cycles of the Baltic Sea are better understood. The importance of surface waves in air-sea interaction is better understood, and Stokes drift and Langmuir circulation have been identified as likely playing an important role in surface water mixing in sea water. We better understand sea ice dynamics and thermodynamics in the coastal zone where sea ice interaction between land and sea is crucial. The Baltic Sea's various straits and sills are of increasing interest in seeking to understand water exchange and mixing. There has been increased research into the Baltic Sea coastal zone, particularly into upwelling, in the past decade. Modelling of the Baltic Sea-North Sea system, including the development of coupled land-sea-atmosphere models, has improved. Despite marked progress in Baltic Sea research over the last decade, several gaps remain in our knowledge and understanding. The current understanding of salinity changes is limited, and future projections of salinity evolution are uncertain. In addition, modelling of the hydrological cycle in atmospheric climate models is severely biased. More detailed investigations of regional precipitation and evaporation patterns (including runoff), atmospheric variability, highly saline water inflows, exchange between sub-basins, circulation, and especially turbulent mixing are still needed. Furthermore, more highly resolved oceanographic models are necessary. In addition, models that incorporate more advanced carbon cycle and ecosystem descriptions and improved description of water-sediment interactions are needed. There is also a need for new climate projections and simulations with improved atmospheric and oceanographic coupled model systems. These and other research challenges are addressed by the recently formed Baltic Earth research programme, the successor of the BALTEX programme, which ended in 2013. Baltic Earth will treat anthropogenic changes and impacts together with their natural drivers. Baltic Earth will serve as a network for earth system sciences in the region, following in the BALTEX tradition but in a wider context. (C) 2014 The Authors. Published by Elsevier Ltd.Peer reviewe

    Transport dynamics in a complex coastal archipelago

    Get PDF
    The Archipelago Sea (in the Baltic Sea) is characterised by thousands of islands of various sizes and steep gradients of the bottom topography. Together with the much deeper Åland Sea, the Archipelago Sea acts as a pathway to the water exchange between the neighbouring basins, Baltic proper and Bothnian Sea. We studied circulation and water transports in the Archipelago Sea using a new configuration of the NEMO 3D hydrodynamic model that covers the Åland Sea–Archipelago Sea region with a horizontal resolution of around 500 m. The results show that currents are steered by the geometry of the islands and straits and the bottom topography. Currents are highest and strongly aligned in the narrow channels in the northern part of the area, with the directions alternating between south and north. In more open areas, the currents are weaker with wider directional distribution. During our study period of 2013–2017, southward currents were more frequent in the surface layer. In the bottom layer, in areas deeper than 25 m, northward currents dominated in the southern part of the Archipelago Sea, while in the northern part southward and northward currents were more evenly represented. Due to the variation in current directions, both northward and southward transports occur. During our study period, the net transport in the upper 20 m layer was southward. Below 20 m depth, the net transport was southward at the northern edge and northward at the southern edge of the Archipelago Sea. There were seasonal and inter-annual variations in the transport volumes and directions in the upper layer. Southward transport was usually largest in spring and summer months, and northward transport was largest in autumn and winter months. The transport dynamics in the Archipelago Sea show different variabilities in the north and south. A single transect cannot describe water transport through the whole area in all cases. Further studies on the water exchange processes between the Baltic proper and the Bothnian Sea through the Archipelago Sea would benefit from using a two-way nested model set-up for the region.</p

    Upwelling events, coastal offshore exchange, links to biogeochemical processes - Highlights from the Baltic Sea Sciences Congress at Rostock University, Germany, 19-22 March 2007

    Get PDF
    The Baltic Sea Science Congress was held at Rostock University, Germany, from 19 to 22 March 2007. In the session entitled"Upwelling events, coastal offshore exchange, links to biogeochemical processes" 20 presentations were given,including 7 talks and 13 posters related to the theme of the session.This paper summarises new findings of the upwelling-related studies reported in the session. It deals with investigationsbased on the use of in situ and remote sensing measurements as well as numerical modelling tools. The biogeochemicalimplications of upwelling are also discussed.Our knowledge of the fine structure and dynamic considerations of upwelling has increased in recent decades with the advent ofhigh-resolution modern measurement techniques and modelling studies. The forcing and the overall structure, duration and intensity ofupwelling events are understood quite well. However, the quantification of related transports and the contribution to the overall mixingof upwelling requires further research. Furthermore, our knowledge of the links between upwelling and biogeochemical processes is stillincomplete. Numerical modelling has advanced to the extent that horizontal resolutions of c. 0.5 nautical miles can now be applied,which allows the complete spectrum of meso-scale features to be described. Even the development of filaments can be describedrealistically in comparison with high-resolution satellite data.But the effect of upwelling at a basin scale and possible changes under changing climatic conditions remain open questions

    On a hyperconvex manifold without non-constant bounded holomorphic functions

    Full text link
    An example is given of a hyperconvex manifold without non-constant bounded holomorphic functions, which is realized as a domain with real-analytic Levi-flat boundary in a projective surface.Comment: 10 pages, final version, to appear in "Geometric Complex Analysis", Springer Proceedings in Mathematics & Statistic

    Ctenophore population recruits entirely through larval reproduction in the central Baltic Sea

    Get PDF
    The comb jelly Mertensia ovum, widely distributed in Arctic regions, has recently been discovered in the northern Baltic Sea. We show that M. ovum also exists in the central Baltic but that the population consists solely of small-sized larvae (less than 1.6 mm). Despite the absence of adults, eggs were abundant. Experiments revealed that the larvae were reproductively active. Egg production and anticipated mortality rates suggest a self-sustaining population. This is the first account of a ctenophore population entirely recruiting through larval reproduction (paedogenesis). We hypothesize that early reproduction is favoured over growth to compensate for high predation pressure

    CPPsite: a curated database of cell penetrating peptides

    Get PDF
    Delivering drug molecules into the cell is one of the major challenges in the process of drug development. In past, cell penetrating peptides have been successfully used for delivering a wide variety of therapeutic molecules into various types of cells for the treatment of multiple diseases. These peptides have unique ability to gain access to the interior of almost any type of cell. Due to the huge therapeutic applications of CPPs, we have built a comprehensive database ‘CPPsite’, of cell penetrating peptides, where information is compiled from the literature and patents. CPPsite is a manually curated database of experimentally validated 843 CPPs. Each entry provides information of a peptide that includes ID, PubMed ID, peptide name, peptide sequence, chirality, origin, nature of peptide, sub-cellular localization, uptake efficiency, uptake mechanism, hydrophobicity, amino acid frequency and composition, etc. A wide range of user-friendly tools have been incorporated in this database like searching, browsing, analyzing, mapping tools. In addition, we have derived various types of information from these peptide sequences that include secondary/tertiary structure, amino acid composition and physicochemical properties of peptides. This database will be very useful for developing models for predicting effective cell penetrating peptides

    Suomen merentutkimuksen ydinkysymykset - Merentutkimuslaitos suomalaisessa yhteiskunnassa

    Get PDF
    Julkaisu sisältää myös toisen artikkelin: Kimmo K. Kahma: Scientific impact of the Finnish Institute of Marine Research: a citation analysi

    Acute central nervous system toxicity during treatment of pediatric acute lymphoblastic leukemia : phenotypes, risk factors and genotypes

    Get PDF
    Publisher Copyright: © 2022 Ferrata Storti Foundation Published under a CC BY-NC license.Central nervous system (CNS) toxicity is common at diagnosis and during treatment of pediatric acute lymphoblastic leukemia (ALL). We studied CNS toxicity in 1, 464 children aged 1.0-17.9 years, diagnosed with ALL and treated according to the Nordic Society of Pediatric Hematology and Oncology ALL2008 protocol. Genome-wide association studies, and a candidate single-nucleotide polymorphism (SNP; n=19) study were performed in 1, 166 patients. Findings were validated in an independent Australian cohort of children with ALL (n=797) in whom two phenotypes were evaluated: diverse CNS toxicities (n=103) and methotrexate-related CNS toxicity (n=48). In total, 135/1, 464 (9.2%) patients experienced CNS toxicity for a cumulative incidence of 8.7% (95% confidence interval: 7.31-10.20) at 12 months from diagnosis. Patients aged ≥10 years had a higher risk of CNS toxicity than had younger patients (16.3% vs. 7.4%; P<0.001). The most common CNS toxicities were posterior reversible encephalopathy syndrome (n=52, 43 with seizures), sinus venous thrombosis (n=28, 9 with seizures), and isolated seizures (n=16). The most significant SNP identified by the genome-wide association studies did not reach genomic significance (lowest P-value: 1.11x10-6), but several were annotated in genes regulating neuronal functions. In candidate SNP analysis, ATXN1 rs68082256, related to epilepsy, was associated with seizures in patients <10 years (P=0.01). ATXN1 rs68082256 was validated in the Australian cohort with diverse CNS toxicities (P=0.04). The role of ATXN1 as well as the novel SNP in neurotoxicity in pediatric ALL should be further explored.Peer reviewe
    • …
    corecore