
Dynamic features of

successive upwelling

events in the Baltic Sea

– a numerical case study

OCEANOLOGIA, 52 (1), 2010.
pp. 77–99.

©C 2010, by Institute of

Oceanology PAS.

KEYWORDS

Upwelling
Baltic Sea

Hel Peninsula
Numerical modelling

Kai Myrberg
1,⋆

Oleg Andrejev
1

Andreas Lehmann
2

1 Finnish Environment Institute/Marine Research Centre,
Mechelininkatu 34a, FIN–00251 Helsinki, Finland;

e-mail: Kai.Myrberg@ymparisto.fi

⋆corresponding author

2 Leibniz Institute of Marine Sciences,
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Abstract

Coastal upwelling often reveals itself during the thermal stratification season as an
abrupt sea surface temperature (SST) drop. Its intensity depends not only on the
magnitude of an upwelling-favourable wind impulse but also on the temperature
stratification of the water column during the initial stage of the event. When
a ‘chain’ of upwelling events is taking place, one event may play a part in forming
the initial stratification for the next one; consequently, SST may drop significantly
even with a reduced wind impulse.
Two upwelling events were simulated on the Polish coast in August 1996 using

a three-dimensional, baroclinic prognostic model. The model results proved to be
in good agreement with in situ observations and satellite data. Comparison of
the simulated upwelling events show that the first one required a wind impulse
of 28 000 kg m−1 s−1 to reach its mature, full form, whereas an impulse of only
7500 kg m−1 s−1 was sufficient to bring about a significant drop in SST at the end
of the second event. In practical applications like operational modelling, the initial
stratification conditions prior to an upwelling event should be described with care
in order to be able to simulate the coming event with very good accuracy.

The complete text of the paper is available at http://www.iopan.gda.pl/oceanologia/
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1. Introduction

Upwelling is an important process in the World Ocean. It is also a well-
known and important factor in Baltic Sea physics. The main mechanism
producing upwelling is wind forcing. Since the Baltic Sea is a semi-
enclosed, relatively small basin, winds from virtually any direction blow
parallel to some section of the coast, giving rise to coastal upwelling there.
During the thermal stratification period, upwelling can lead to a sudden
sea surface temperature drop of more than 10◦C, abruptly changing the
thermal balance and stability conditions at the sea surface. Upwelling
can additionally play a key role in replenishing the euphotic zone with
the nutritional components necessary for biological productivity when the
surface layer is depleted of nutrients. In general two classes of upwelling
can be distinguished: open-sea and coastal upwelling. The first class is of
considerably larger scale and includes such vertical motions as those caused
by the wind (Ekman pumping), and effects of the main oceanic thermocline
and equatorial ocean currents. Coastal upwelling is regionally more limited
than open ocean upwelling but its stronger vertical motion is associated
with a greater climatic and biological impact. Vertical motions in coastal
upwelling are of the order of 10−5 m s−1, in open ocean upwelling they
are about 10−6 m s−1, which corresponds to 1 m day−1 and 0.1 m day−1

respectively (Dietrich 1972 ed.). Coastal upwelling could be defined as the
vertical movement of water masses compensating for the offshore Ekman
drift, but oceanographers often include in this term the consequences of
this vertical movement in stratified waters. For example, Csanady (1977)
uses the term ‘full’ upwelling when the vertical movement is intensive and
sufficiently long-lasting to move the thermocline up to the surface. The same
idea is incorporated in multi-layer models of upwelling (Cushman-Roisin
1994). In this paper we are going to retain this broader interpretation of
the term ‘upwelling’. The reverse of upwelling is called downwelling; this is
associated with surface convergence and divergence in a lower layer where
the water’s descent terminates. Downwelling does not manifest itself so
clearly at the sea surface and does not have such biological relevance as
upwelling (for details, see Lehmann & Myrberg 2008).

How, then, can we find out where upwelling takes place? There are many
ways to investigate it. In summer, a rapid and abrupt drop in SST is a key
parameter, indicating that upwelling may be taking place. The distribution
of vertical velocity is also a good parameter for studying upwelling,
especially when numerical models are available (Myrberg & Andrejev 2003).
In the case of upwelling, the vertical velocity is always directed upwards
in the areas of interest. However, there are considerable difficulties with
estimating vertical velocities from measurements. The distribution of water
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density is not such a good indicator because in the Baltic Sea the effect of
temperature on density is not as pronounced as that of salinity. Moreover,

the main upwelling events in the Baltic usually take place in coastal areas
where the vertical distribution of salinity is quite homogeneous and thus, no

great changes in sea water density are expected to take place in connection
with upwelling (Leppäranta & Myrberg 2009).

In this paper we focus on the investigations of the dynamics of two

upwelling events occurring off the coast of the Hel Peninsula, Poland, in
August 1996. Our study is based on high-resolution three-dimensional

baroclinic hydrodynamic model simulations. The motivation of the study
is the following: the mesoscale dynamics of upwelling in the Baltic Sea

is still not fully understood, hence further investigations are an ongoing
activity. The most recent steps in modelling studies are to be found in

the papers by Zhurbas et al. (2008) and Laanemets et al. (2009). For the
Gulf of Finland these authors used the Princeton Ocean Model with a very

high-resolution (ca 0.5 nm× 0.5 nm). They found interesting mesoscale
features of upwelling with filaments and squirts. We continue here to

analyse mesoscale features in the current and temperature fields related
to coastal upwelling. It will be shown later on that the estimate of

the upwelling extension given by a two-layer reduced-gravity model (the
qualitative analysis of this model is presented in Cushman-Roisin 1994)

is, not surprisingly, close to our results. Simple two-layer models take
into account the main mechanisms causing upwelling – the Ekman offshore

drift and geostrophic adjustment. Such a simplified two-layer approach also
helps us to understand the specific features of vorticity distribution in the

upwelling area.

A measure of the winds capable of causing upwelling is the wind impulse,
which can be estimated by integrating the wind stress over the duration of

the event (Cushman-Roisin 1994, Haapala 1994). How upwelling manifests
itself depends on the stratification and the strength of the wind impulse;

the main aim of this paper is therefore to describe, by using numerical
modelling and measurements, the role of initial temperature stratification

in the development of upwelling. This important subject has so far not been
studied extensively in the Baltic Sea. The numerical simulations for summer

1996 in the southern Baltic show how wind impulses of rather different
magnitudes can cause a significant drop in the sea surface temperature, and

how this in turn depends on the temperature stratification during the early
development of the upwelling.

The structure of the paper is as follows. Section 2 describes the

numerical model with its experimental set-up. The case study for summer
1996 is introduced with the data sets used for the model run and its
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verifications. After that, the results of wind impulse calculations for different

upwelling-favourable wind events are presented. The main model results

are analysed in Section 3 – this starts with a verification of the model

using satellite images and in situ data. Since no current measurements

are available for the model verification, we show that the dynamics of the

simulated upwelling is in agreement with the simple two-layer approach.

After that we describe how successive upwelling events are affected by

previous ones. The study concludes with a summary and a review of some

of the practical consequences of the investigation.

2. Material and methods

2.1. The model

The numerical model, developed by Andrejev & Sokolov (1989, 1990),

is of the time-dependent, free-surface, baroclinic, three-dimensional type,

using traditional simplifications: the hydrostatic approximation, an in-

compressibility condition, a Laplacian closure hypothesis for sub-grid scale

turbulent mixing, and the β-plane approximation. Since the reader will find

a detailed description of the model in, for example, Myrberg & Andrejev

(2003), Andrejev et al. (2002, 2004a,b), and Myrberg & Andrejev (2006),

we describe the model here only in brief.

The model used here was recently validated against an extensive data

set in the Gulf of Finland in 1996 with encouraging results. Additionally,

the results of six hydrodynamic models, including the model used here, for

the Gulf of Finland have been inter-compared with a thorough statistical

analysis of the results (Myrberg et al. 2010).

Main parameters and assumptions

The horizontal kinematic eddy diffusivity coefficient was calculated using

the formula of Smagorinsky (1963). The vertical eddy diffusivity coefficient

was taken to depend on the local velocity shear and stratification (Kochergin

1987). Wind stress was described by the well-known quadratic law following

Niiler & Kraus (1977), and the drag coefficient at the sea-surface was

formulated according to Bunker (1976). A quadratic law was used for

the bottom friction, where the drag coefficient was prescribed as 0.0026

(Proudman 1953). Heat fluxes at the sea-surface were calculated in the

same way as suggested in the COHERENS-model (see http://www.mumm.

ac.be/∼patrick/mast/).
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Set-up of the numerical model experiments

The numerical simulation covers the period from 1 July 1996 until
31 August 1996. The applied 1x1 nautical mile bathymetry is based on
Seifert & Kayser (1995). However, a slightly changed coastline (taken from
navigational maps) was constructed for the Hel Peninsula area to take
into account specific topographic features there, which are not described
accurately enough in the standard topography.
The open boundary of the model domain was placed in the Kattegat

along latitude 57◦35′N. In order to properly prescribe the sea level in the
Kattegat, observations were needed from both ends of the open boundary,
namely, one observation point on the Swedish side and one on the Danish
side. An active free radiation condition (Orlanski 1976, Mutzke 1998) was
used for the Kattegat sea level and the respective sea level measurements
at Göteborg (Sweden) and Fredrikshamn (Denmark) at 1 h intervals. The
horizontal resolution for the entire Baltic Sea model – 1 nautical mile in
both horizontal directions – is suitable to describe mesoscale dynamics; this
is scaled by the internal Rossby radius, which varies between 3 and 10 km
in this area (see e.g. Fennel et al. 1991). The model comprised 44 levels
in the vertical with a layer thickness increasing monotonically towards the
bottom (2.5 m for the upper layer, 5 m intervals down to 152.5 m, and
below that depth 10 m intervals). We used the Swedish Meteorological
and Hydrological Institute’s (SMHI) gridded meteorological data (wind
speed and direction, air temperature, cloudiness, relative humidity and
precipitation) for the simulation period with a spatial resolution of 1 degree
for the entire Baltic Sea area and with a temporal resolution of 3 hours.
Since the wind velocities in the data set represent geostrophic values only,
these were reduced to represent 10 m values. A standard method for this
correction is to multiply the wind speed by a factor of 0.6 and deflect the
direction 15◦ anticlockwise (Bumke & Hasse 1989). We used the Data
Assimilation System and Baltic Environmental Database (Sokolov et al.
1997) for constructing the initial temperature and salinity fields. The mean
monthly river discharges for 1970–90 (Bergström & Carlsson 1994, Sokolov
et al. 1997) were used. Altogether 29 rivers were taken into account in the
entire Baltic model. Runoff from small rivers was added to the discharges
of the main rivers.

2.2. Verification data

SST maps were kindly made available by the Federal Maritime and
Hydrographic Agency (BSH, Hamburg Germany) and were processed
operationally from infrared high resolution data of the U.S. NOAA weather
satellite series. The accuracy of the SSTs is about ±0.2◦C.
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Additionally CTD measurements carried out during a hydrographic
survey by the Polish r/v ‘Baltica’ (Baltic Environmental Database http:
//nest.su.se/bed/) in August 1996 were used to validate the simulated
results of upwelling.

2.3. Wind conditions and wind impulse for upwelling events in

August 1996 on the Polish coast

On the Polish coast upwelling is favoured when a high pressure system
is located over north-western Russia, which gives rise to light or moderate
easterly to south-easterly winds over the southern Baltic (Bychkova & Vik-
torov 1987, Malicki & Wielbińska 1992, Lehmann & Myrberg 2008). The
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Figure 1. The calculated sea surface temperature on 13 August 1996. The location
of the upwelling area under investigation is marked with a circle
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area of interest is located off the Hel Peninsula (Figure 1). On the basis of
a seven-year numerical model simulation Kowalewski & Ostrowski (2005)
recently found that wind directions favourable to upwelling on the Polish
coast range from 45◦ to 180◦, i.e. winds blowing from north-east to south
(Figure 2).
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Figure 2. Probability
of upwelling (blue, dark-
blue) and downwelling
(yellow, orange) events,
depending on the wind
direction near the Hel
Peninsula (redrawn from
Kowalewski & Ostrowski
2005)

fa
v
o
u
ra

b
le

 w
in

d
 v

el
o
ci

ty
 [

m
 s

]
-1 12

10

8

6

4

2

0

days of August 1996

7 15 19 21 23 24 26     28 2930

Figure 3. Wind velocities [m s−1] favourable (from between 45◦ and 180◦) to
upwelling at the SMHI gridded data point nearest to the Hel Peninsula in August
1996

Figure 3 shows the time periods of winds favourable (blowing from
between 45◦ and 180◦) to upwelling at the SMHI gridded data point nearest
to the Hel Peninsula in August 1996. It turned out that there were many
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different periods with different lengths from one day to about one week,
when upwelling-favourable winds were blowing. Wind speeds were typically
around 5 m s−1, reaching a maximum of about 12 m s−1.
In the Gulf of Gdańsk, upwelling has most often been found to take

place off the Hel Peninsula (see e.g. Matciak et al. 2001). The potential
maximum upwelling area on the Polish coast amounts to 10 000 km2, which
is ca 30% of the Polish economic zone (Krężel et al. 2005).
Following Cushman-Roisin (1994) and Haapala (1994), the wind impulse

as the integration of the wind-stress over time is:

I =

t
∫

0

τa dt′ =

t
∫

0

Ca ρa U2

a dt′, (1)

where ρa is the air density, Ca the drag coefficient, Ua the wind speed at 10 m
height and t the wind duration. Table 1 gives the dates when an upwelling-
favourable wind started to blow and the duration of such a wind event in
hours. The corresponding wind impulses I were calculated according to
equation (1) using the SMHI gridded meteorological data (geostrophic wind
corrected to represent a 10 m wind according to Bumke & Hasse 1989) at
the grid point nearest the Hel Peninsula.

Table 1. Periods of winds favourable to upwelling, their duration (h) and wind
impulse (in kg m−1 s−1) off the Hel Peninsula in August 1996 calculated using
equation (1) with SMHI gridded data

Start of event Duration Wind impulse
[h] [kg m−1 s−1]

7 August 228 36 000
19 August 66 1800
23 August 28 700
26 August 42 7500
29 August 12 120

It turned out that the wind impulse for the first case, beginning on 7
August, was very large (36 000 kg m −1 s−1) due to the quite high wind
speed (mostly between 5 and 11 m s−1) and the long duration of the wind
event (Figure 3). After that, there were two short periods of upwelling-
favourable winds, starting on 19 August (wind impulse 1800 kg m−1 s−1)
and on 23 August (wind impulse 700 kg m−1 s−1), which did not produce
any noticeable SST drop (Figure 4). Between 26 and 28 August upwelling-
favourable winds were again blowing with speeds of up to 10 m s−1 and
an impulse equal to 7500 kg m−1 s−1, which caused a significant upwelling.
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Figure 4. The time series of the calculated sea surface temperature near the Hel
Peninsula, August 1996. The temperature is given in ◦C, the time in days

3. Results

3.1. Verification of model results

The calculated sea-surface temperature on 13 August (Figure 1) and
the SST of the satellite image – a composite of satellite overpasses from
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Figure 5. Satellite image of the sea surface temperature – a composite of satellite
overpasses from 7–13 August 1996
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7–13 August 1996 (Figure 5) – resemble one another closely. Both images

show a wide strip of cold water along the western coast of the Baltic – the

similarity is especially significant for the Gulf of Bothnia – and they also

demonstrate traces of upwelling off both the northern and southern coasts

of the Gulf of Finland. Upwelling also becomes visible off the coasts of the

islands of Gotland, Bornholm and Rügen.

The evident resemblance in upwelling shape and the good corre-

spondence in sea surface temperature distribution is demonstrated by

comparison of Figures 6 and 7: the former shows the calculated sea surface

temperature on 13 August for the Hel Peninsula area, the latter shows the

satellite image for the same area and day. The shape and extension of

the upwelling area off the Hel Peninsula is well described by the model.

However, even when the model’s resolution is high, the frontal areas are

somewhat too diffusive. The model-produced upwelling in the southern

corner of the Gulf of Gdańsk and west of the Curonian Spit is much less

strongly developed in the satellite data. This is because the model lacks

a detailed description of the Vistula Lagoon. Another possibility might be

the inaccuracies in the wind forcing data used (SMHI gridded data).
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Figure 6. Calculated sea surface temperature map on 13 August 1996 showing
the position of cross-section A–B
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Figure 7. Satellite image of the sea surface temperature off the Hel Peninsula on
13 August 1996

The observations made on board r/v ‘Baltica’ on 29 August (Figure 8)
revealed a very pronounced upwelling with a minimum temperature of
only 9.2 degrees. According to the model there were even slightly lower
temperatures towards the south-east near the Hel Peninsula (see also
Figure 4). The measured temperature increased north-westwards, reaching
normal summer values of about 17◦C in the open sea. The model reproduced
very well both the location of the coldest water, i.e. the core of the upwelling
area north of the Hel Peninsula, and the gradual north-westward increase
in SST.

No observations of the current dynamics in the Hel Peninsula area
during August 1996 were available. So, to analyse and confirm that the
gross features of our model results were correct in relation to the simulated
upwelling dynamics, we checked to see how our results tallied with the
classical theory of dynamics. We compared our results with estimates given
by a simple, two-layer, reduced-gravity model. Being quite robust, this
model takes into account the main mechanisms of upwelling dynamics:
offshore Ekman drift in response to wind, and geostrophic adjustment
during the formation of the coastal upwelling front. A qualitative analysis
of this model is presented by Cushman-Roisin (1994). In the case of an
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Figure 8. The calculated sea surface temperature on 29 August 1996 off the Hel
Peninsula. The rectangles in the figure indicate the temperatures measured on
board r/v ‘Baltica’

upwelling event in its mature state, the extension of the upwelling area in
the offshore direction χEk can be estimated as:

χEk =
I

Hρ0f
− R, (2)

where H is the depth of the upper layer in an undisturbed state. Here
the thickness of this layer is taken to be equal to the depth of thermocline,
which is of the order of the entire vertical extent of the Ekman layer, ρ0 is the

reference water density, R is the Rossby radius of deformation R =

√

g′H
f
,

g′ = g
∆ρ
ρ is the reduced gravity, ∆ρ is the density difference between the

two layers and f is the Coriolis parameter.

The variables on 13 August in the vicinity of the Hel Peninsula had

the following orders: H = 7 m, ∆ρ
ρ0

= 10−3, R ≈

√

10 × 10−3 × 7

1 × 10
−4

≈ 3 km,

I = 28000 kg m−1 s−1 (wind impulse applied to reach the full upwelling);

formula (2) gives the front offshore displacement χEk ≈
28 000

7 × 10
3
× 10

−4
−

3000 = 37 km.
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Figure 9 shows the calculated distribution of the absolute vector gradient
of sea surface temperature and, therefore, the location of the coastal
upwelling front on 13 August. The front is located at a distance of
approximately 30–40 km offshore, which is in good agreement with the
estimate given by formula (2). It is important to note that the thermocline
depth in the Hel Peninsula area was almost spatially uniform until the
beginning of the first upwelling. This fact allows us to use formula (2).
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Figure 9. The absolute value of the sea surface temperature vector gradient in
◦C× 10

−2 km−1 on 13 August 1996

On 13 August upwelling reached its culmination phase (Figure 6) and
the upwelling front separated cold water (exposed and therefore stretching
the lower layer) from warm water (squeezing the upper layer). Figure 10
shows the corresponding velocity field with vortices developing on both sides
of the front. Figure 11 shows the corresponding sea surface elevation.

A typical feature related to coastal upwelling is the formation of an
offshore-directed jet of upwelled water that extends through the SST frontal
area (Cushman-Roisin 1994). The starting time of jet development is
noticeable on 13 August (Figures 6 and 7) and is distinctly visible in the
current and surface temperature fields on 21 August (Figures 12 and 13).
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Figure 10. Velocity field at depth 10 m on 13 August 1996. The blue arrow shows
the area of cyclonic vorticity, the red one the area of anticyclonic vorticity
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Figure 11. Sea level (in metres) on 13 August 1996

Later, on 26 August, the jet split to form pairs of counter-rotating
vortices (Figure 14), while the effects of the previous upwelling on the
SST smoothed towards a relatively homogeneous structure (Figure 15).
A structure very similar to this jet can be found in many satellite images of
the Hel Peninsula area presenting AVHRR satellite data for 2000 and 2001
(see e.g. Myrberg et al. 2008).
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Figure 12. Surface flow field and the frontal zone (blue arrows) off the Polish
coast on 21 August 1996
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Figure 13. Sea surface temperature map on 21 August 1996

Such variability in the upwelling front is often observed in the Baltic Sea.
It can be understood as an instability process of strongly sheared currents
associated with upwelling. Because of the drop in sea level (Figure 11),
a barotropic coastal jet develops, which is driven by coastal irregularities and
the bottom topography. This jet is horizontally sheared and thus vulnerable
to barotropic instability. On the other hand, the temperature gradient gives
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Figure 14. Surface flow field off the Polish coast on 26 August 1996. The blue
arrow shows the area of cyclonic vorticity, the red one the area of anticyclonic
vorticity
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Figure 15. Sea surface temperature map on 26 August 1996

rise to a baroclinic sheared current, which is, of course, prone to baroclinic
instability. According to the two-layer formulation we can say that the
warm layer develops anticyclonic vorticity under the influence of vertical
squeezing. On the other side of the front the exposed lower layer is vertically
stretched, and cyclonic vorticity develops. This explains why mesoscale
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turbulence is associated with upwelling fronts (for details, see Cushman-
Roisin 1994).

3.2. The modelled upwelling events

Figure 16 shows the salinity cross-section off the Hel Peninsula. At
the beginning of the analysis of the August 1996 upwelling events we will
take a brief look at how upwelling is reflected in the salinity conditions
near the Hel Peninsula. It becomes clear that on the open-sea side the
salinity stratification is pronounced with a halocline at a depth of 55–60 m.
In the upwelling area, however, the isohalines are strongly tilted; in fact,
they are nearly vertical, and thus the surface salinity is about 1 per mille
higher than on the open-sea side – the respective values are 8.5 and 7.5 per
mille.
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Figure 16. Salinity cross-section on 13 August 1996, as shown in Figure 6

The results of our analysis show that in August 1996 there were two
conspicuous upwelling events (see Figures 3 and 4; Table 1). The favourable
wind for the first upwelling blew from 7 to 16 August, the duration of this
wind event being 228 hours. The SST minimum was reached on 13 August,
after 160 hours of favourable wind forcing. It was precisely on 13 August
that this upwelling became mature or full (Figure 6 and 17), according
to Csanady’s (1977) terminology. After that, the wind direction remained
favourable to upwelling for another 68 hours or so but was too weak to
bring about any further notable upwelling development. So, in fact the



94 K. Myrberg, O. Andrejev, A. Lehmann

d
ep

th
 [

m
]

18

16

14

12

10

8

6

BA

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

Figure 17. Temperature cross-section on 13 August 1996, as shown in Figure 6

upwelling reached its full form already after having consumed a wind impulse
of 28 000 kg m−1 s−1. During this first event, SST decreased from 18.1◦C

to 5.8◦C (SST drop 12.3◦C). The second upwelling (Figure 19) took place
between 26 and 29 August. The wind impulse then was 7500 kg m−1 s−1

and the SST fell from 14.3◦C to 8.8◦C (SST drop 5.5◦C).

This second upwelling event lasted for 42 hours. It is interesting to note

that during the first upwelling it took about 85 hours for SST to fall by

d
ep

th
 [

m
]

18

16

14

12

10

8

6

BA

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

Figure 18. Temperature cross-section on 26 August 1996, as shown in Figure 6



Dynamic features of successive upwelling events . . . 95

d
ep

th
 [

m
]

18

16

14

12

10

8

6

BA

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

Figure 19. Temperature cross-section on 29 August 1996, as shown in Figure 6

5.5◦C, which is equal to the total drop in SST during the second upwelling

event. Thus, the time derivative of SST at the beginning of the first

upwelling was half the value of that in the second one. The reason

behind the differences in the time evolution of SST between the first and

second events can be found by investigating the evolution of the vertical

temperature stratification of the Hel Peninsula area. During the initial

state of the first upwelling, the thermocline was at 6–10 m depth. After

that, the prevailing wind became weak and/or its direction most of the

time was unfavourable to upwelling development near the Hel Peninsula.

Thus, the SST gradually rose from 5.5◦C on 13 August to 14.3◦C on 26

August. Simultaneously, the vertical structure of temperature gradually

shifted back towards normal. A thin but well defined thermocline reformed

in the Hel Peninsula area; it is visible in the model simulations for 26

August (Figure 18). However, the mixed layer was thinner and the

stratification weaker on the Hel side in comparison to the open-sea side,

where downwelling was taking place. Near the shore the thermocline depth

was about 5 m. So the wind impulse required to lift this interface to the sea

surface was quite small. In this case it proved to be 7500 kg m−1 s−1.

It should be borne in mind that generally in early summer, a much

smaller wind impulse is needed to produce an upwelling event than in

autumn, when the mixed layer can be as deep as 20 m. According to

the model results, the order of the vertical velocity during both upwelling

events was approximately 1.0–3.0 × 10−5 m s−1, which can be evaluated

as relatively high.
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4. Summary and conclusions

This paper examines a sequence of upwelling events on the Polish coast
off the Hel Peninsula in August 1996. In addition to modelling these events,
the results of the simulations are compared with satellite and in situ data
of sea-surface temperature; the fit is very good.

Until now, too little attention has been paid in Baltic Sea studies to the
investigation of the prehistory of stratification and its role in the formation
of new upwelling events. Our numerical model study has shown clearly
that the intensity of such an event depends not only on the magnitude of an
upwelling-favourable wind impulse but also on the temperature stratification
of the water column during the initial stage of the event. When a ‘chain’
of upwelling events is taking place, one upwelling may play a part in
forming the initial stratification for the next upwelling, as a result of which
a reduced wind impulse may be enough to induce a significant drop in SST.
So, in practical applications (like e.g. operational modelling) the initial
stratification conditions prior to an upwelling event should be described
with care in order to be able to simulate future upwelling events with good
accuracy.

It has also been found that upwelling-related temperature fronts are
often coupled with the development of cyclonic/anticyclonic vortices.
Upwelling fronts are regions of highly sheared currents, and hence potential
regions of instability. Vortices may develop from the horizontal shear of the
coastal jet (barotropic instability). In addition, potential energy can also
be released from the stratification when the warm layer spreads (baroclinic
instability). Offshore jets of cold, upwelled waters have been observed to
form near coastal irregularities; these jets cut through the front, forge their
way through the warm layer, and eventually split to form pairs of counter-
rotating vortices (Flament et al. 1985). Therefore, upwelling fronts are often
associated with mesoscale turbulence.
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H., Anderson T.R., Lehmann A., Skogen M.D., 2010, Validation of three-
dimensional hydrodynamic models of the Gulf of Finland based on a statistical
analysis of a six-model ensemble, Boreal Environ. Res., (in press).

Niiler P., Kraus E., 1977, One-dimensional models of the upper ocean, [in:]
Modelling and prediction of the upper layers of the ocean, E. Kraus (ed.),
Pergamon Press, Oxford, 143–172.

Orlanski I., 1976, A simple boundary condition for unbounded hyperbolic flows,
J. Comp. Phys., 21, 251–269.

Proudman J., 1953, Dynamical oceanography, Methuen & Co., London, 409 pp.

Seifert T., Kayser B., 1995, A high resolution spherical grid topography of the Baltic
Sea, Meereswiss. Ber./Mar. Sci. Rep., Inst. Ostseeforsch., Warnemünde.



Dynamic features of successive upwelling events . . . 99

Smagorinsky J., 1963,General circulation experiments with the primitive equations.
Part I: The basic experiment, Mon. Weather Rev., 91 (3), 99–164.

Sokolov A., Andrejev O., Wulff F., Rodriguez Medina M., 1997, The data
assimilation system for data analysis in the Baltic Sea, Syst. Ecol. Contrib.,
(Stockholm Univ.), 3, 66 pp.

Zhurbas V.M., Laanemets J., Vahtera E., 2008,Modeling of the mesoscale structure
of coupled upwelling/downwelling events and related input of nutrients to the
upper mixed layer in the Gulf of Finland, Baltic Sea, J. Geophys. Res., 113,
C05004, doi:10.1029/2007JC004280.


