64 research outputs found

    Star Formation in the vicinity of Nuclear Black Holes: Young Stellar Objects close to Sgr A*

    Full text link
    It is often assumed that the strong gravitational field of a super-massive black hole disrupts an adjacent molecular cloud preventing classical star formation in the deep potential well of the black hole. Yet, young stars have been observed across the entire nuclear star cluster of the Milky Way including the region close (<<0.5~pc) to the central black hole, Sgr A*. Here, we focus particularly on small groups of young stars, such as IRS 13N located 0.1 pc away from Sgr A*, which is suggested to contain about five embedded massive young stellar objects (<<1 Myr). We perform three dimensional hydrodynamical simulations to follow the evolution of molecular clumps orbiting about a 4×106 M4\times10^6~M_{\odot} black hole, to constrain the formation and the physical conditions of such groups. The molecular clumps in our models assumed to be isothermal containing 100 MM_{\odot} in <<0.2 pc radius. Such molecular clumps exist in the circumnuclear disk of the Galaxy. In our highly eccentrically orbiting clump, the strong orbital compression of the clump along the orbital radius vector and perpendicular to the orbital plane causes the gas densities to increase to values higher than the tidal density of Sgr A*, which are required for star formation. Additionally, we speculate that the infrared excess source G2/DSO approaching Sgr A* on a highly eccentric orbit could be associated with a dust enshrouded star that may have been formed recently through the mechanism supported by our models.Comment: 18 pages, 11 figures, accepted for publication in MNRA

    Temperature constraints on the coldest brown dwarf known WISE 0855-0714

    Full text link
    Context. Nearby isolated planetary mass objects are beginning to be discovered, but their individual properties are poorly constrained because their low surface temperatures and strong molecular self-absorption make them extremely faint. Aims. We aimed to detect the near infrared emission of the coldest brown dwarf (BD) found so far, WISE0855-0714, located \sim2.2 pc away, and to improve its temperature estimate (Teff_{\rm eff}= 225-260 K) from a comparison with state-of-the-art models of BD atmospheres. Methods. We observed the field containing WISE0855-0714 with HAWK-I at the VLT in the YY band. For BDs with Teff<_{\rm eff}<500\,K theoretical models predict strong signal (or rather less molecular absorption) in this band. Results. WISE0855-0714 was not detected in our Y-band images, thus placing an upper limit on its brightness to Y>24.4 mag at 3-σ\sigma level, leading to Y-[4.5]>10.5. Combining this limit with previous detections and upper limits at other wavelengths, WISE0855-0714 is confirmed as the reddest BD detected, further supporting its status as the coldest known brown dwarf. We applied spectral energy distribution fitting with collections of models from two independent groups for extremely cool BD atmospheres leading to an effective temperature of Teff<_{\rm eff}<250\,K,.Comment: 4 pages, 4 figures. A&A letter Accepte

    A high binary fraction for the most massive close-in giant planets and brown dwarf desert members

    Get PDF
    Stellar multiplicity is believed to influence planetary formation and evolution, although the precise nature and extent of this role remain ambiguous. We present a study aimed at testing the role of stellar multiplicity in the formation and/or evolution of the most massive, close-in planetary and substellar companions. Using direct imaging observations, as well as the Gaia DR2 catalogue, we searched for wide binary companions to 38 stars hosting massive giant planets or brown dwarfs (M > 7 MJup) on orbits shorter than ~1 AU. We report the discovery of a new component in the WASP-14 system, and present an independent confirmation of a comoving companion to WASP-18. From a robust Bayesian statistical analysis, we derived a binary fraction of 79.0+13.2-14.7% between 20-10,000 AU for our sample, twice as high as for field stars with a 3-{\sigma} significance. This binary frequency was found to be larger than for lower-mass planets on similar orbits, and we observed a marginally higher binary rate for inner companions with periods shorter than 10 days. These results demonstrate that stellar companions greatly influence the formation and/or evolution of these systems, suggesting that the role played by binary companions becomes more important for higher-mass planets, and that this trend may be enhanced for systems with tighter orbits. Our analysis also revealed a peak in binary separation at 250 AU, highlighting a shortfall of close binaries among our sample. This indicates that the mechanisms affecting planet and brown dwarf formation or evolution in binaries must operate from wide separations, although we found that the Kozai-Lidov mechanism is unlikely to be the dominant underlying process. We conclude that binarity plays a crucial role in the existence of very massive short-period giant planets and brown dwarf desert inhabitants, which are almost exclusively observed in multiple systems.Comment: Accepted for publication in MNRAS. 30 pages, 20 figures. Updated to include proof correction

    Bipolar molecular outflow of the very low-mass star Par-Lup3-4

    Full text link
    Very low-mass stars are known to have jets and outflows, which is indicative of a scaled-down version of low-mass star formation. However, only very few outflows in very low-mass sources are well characterized. We characterize the bipolar molecular outflow of the very low-mass star Par-Lup3-4, a 0.12 M_{\odot} object known to power an optical jet. We observed Par-Lup3-4 with ALMA in Bands 6 and 7, detecting both the continuum and CO molecular gas. In particular, we studied three main emission lines: CO(2-1), CO(3-2), and 13^{13}CO(3-2). Our observations reveal for the first time the base of a bipolar molecular outflow in a very low-mass star, as well as a stream of material moving perpendicular to the primary outflow of this source. The primary outflow morphology is consistent with the previously determined jet orientation and disk inclination. The outflow mass is 9.5×107M9.5\times10^{-7}\mathrm{M}_{\odot} , with an outflow rate of 4.3×109Myr14.3\times10^{-9}\mathrm{M}_{\odot}\mathrm{yr}^{-1} A new fitting to the spectral energy distribution suggests that Par-Lup3-4 may be a binary system. We have characterized Par-Lup3-4 in detail, and its properties are consistent with those reported in other very low-mass sources. This source provides further evidence that very low-mass sources form as a scaled-down version of low-mass stars.Comment: 20 pages, 11 figures, 5 tables. Accepted in A&

    Cometary shaped sources at the Galactic Center - Evidence for a wind from the central 0.2 pc

    Full text link
    In 2007 we reported two cometary shaped sources in the vicinity of Sgr A* (0.8" and 3.4" projected distance), named X7 and X3. The symmetry axes of the two sources are aligned to within 5 degrees in the plane of the sky and the tips of their bow-shocks point towards Sgr A*. Our measurements show that the proper motion vectors of both features are pointing in directions more than 45 deg away from the line that connects them with Sgr A*. This misalignment of the bow-shock symmetry axes and their proper motion vectors, combined with the high proper motion velocities of several 100 km/s, suggest that the bow-shocks must be produced by an interaction with some external fast wind, possibly coming from Sgr A*, or stars in its vicinity. We have developed a bow-shock model to fit the observed morphology and constrain the source of the external wind. The result of our modeling allows us to estimate the velocity of the external wind, making sure that all likely stellar types of the bow-shock stars are considered. We show that neither of the two bow-shocks (one of which is clearly associated with a stellar source) can be produced by influence of a stellar wind of a single mass-losing star in the central parsec. Instead, an outflow carrying a momentum comparable to the one contributed by the ensemble of the massive young stars, can drive shock velocities capable of producing the observed cometary features. We argue that a collimated outflow arising perpendicular to the plane of the clockwise rotating stars (CWS), can easily account for the two features and the mini-cavity. However, the collective wind from the CWS has a scale of >10''. The presence of a strong, mass-loaded outbound wind at projected distances from Sgr A* of <1'' is in fact in agreement with models that predict a highly inefficient accretion onto the central black hole due to a strongly radius dependent accretion flow.Comment: to appear in A&

    The mean infrared emission of SagittariusA*

    Full text link
    (abridged) The massive black hole at the center of the Milky Way, SagittariusA* is, in relative terms, the weakest accreting black hole accessible to observations. At the moment, the mean SED of SgrA* is only known reliably in the radio to mm regimes. The goal of this paper is to provide constraints on the mean emission from SgrA* in the near-to-mid infrared. Excellent imaging quality was reached in the MIR by using speckle imaging combined with holographic image reconstruction, a novel technique for this kind of data. No counterpart of SgrA* is detected at 8.6 microns. At this wavelength, SgrA* is located atop a dust ridge, which considerably complicates the search for a potential point source. An observed 3 sigma upper limit of ~10 mJy is estimated for the emission of SgrA* at 8.6 microns, a tighter limit at this wavelength than in previous work. The de-reddened 3 sigma upper limit, including the uncertainty of the extinction correction, is ~84 mJy . Based on the available data, it is argued that, with currently available instruments, SgrA* cannot be detected in the MIR, not even during flares. At 4.8 and 3.8 microns, on the other hand, SgrA* is detected at all times, at least when considering timescales of a few up to 13 min. We derive well-defined time-averaged, de-reddened flux densities of 3.8+-1.3 mJy at 4.8 microns and 5.0+-0.6 mJy at 3.8 microns. Observations with NIRC2/Keck and NaCo/VLT from the literature provide good evidence that SgrA* also has a fairly well-defined de-reddened mean flux of 0.5-2.5 mJy at wavelengths of 2.1-2.2 microns. We present well-constrained anchor points for the SED of SgrA* on the high-frequency side of the Terahertz peak. The new data are in general agreement with published theoretical SEDs of the mean emission from SgrA*, but we expect them to have an appreciable impact on the model parameters in future theoretical work.Comment: accepted for publication by Astronomy & Astrophysics on 20 June 201

    First proper motions of thin dust filaments at the Galactic Center

    Full text link
    Context: L'-band (3.8 micron) images of the Galactic Center show a large number of thin filaments in the mini-spiral, located west of the mini-cavity and along the inner edge of the Northern Arm. One possible mechanism that could produce such structures is the interaction of a central wind with the mini-spiral. Additionally, we identify similar features that appear to be associated with stars. Aims: We present the first proper motion measurements of the thin dust filaments observed in the central parsec around SgrA* and investigate possible mechanisms that could be responsible for the observed motions. Methods: The observations have been carried out using the NACO adaptive optics system at the ESO VLT. The images have been transformed to a common coordinate system and features of interest were extracted. Then a cross-correlation technique could be performed in order to determine the offsets between the features with respect to their position in the reference epoch. Results: We derive the proper motions of a number of filaments and 2 cometary shaped dusty sources close (in projection) to SgrA*. We show that the shape and the motion of the filaments does not agree with a purely Keplerian motion of the gas in the potential of the supermassive black hole at the position of SgrA*. Therefore, additional mechanisms must be responsible for their formation and motion. We argue that the properties of the filaments are probably related to an outflow from the disk of young mass-losing stars around SgrA*. In part, the outflow may originate from the black hole itself. We also present some evidence and theoretical considerations that the outflow may be collimated.Comment: accepted for publication by A&

    Simultaneous NIR/sub-mm observation of flare emission from SgrA*

    Get PDF
    We report on a successful, simultaneous observation and modeling of the sub-millimeter to near-infrared flare emission of the Sgr A* counterpart associated with the super-massive black hole at the Galactic center. Our modeling is based on simultaneous observations that have been carried out on 03 June, 2008 using the NACO adaptive optics (AO) instrument at the ESO VLT and the LABOCA bolometer at the APEX telescope. Inspection and modeling of the light curves show that the sub-mm follows the NIR emission with a delay of 1.5+/-0.5 hours. We explain the flare emission delay by an adiabatic expansion of the source components.Comment: 12 pages, 9 figures, 3 tables, in press with A&

    Extrapolating SMBH correlations down the mass scale: the case for IMBHs in globular clusters

    Full text link
    Empirical evidence for both stellar mass black holes M_bh<10^2 M_sun) and supermassive black holes (SMBHs, M_bh>10^5 M_sun) is well established. Moreover, every galaxy with a bulge appears to host a SMBH, whose mass is correlated with the bulge mass, and even more strongly with the central stellar velocity dispersion sigma_c, the `M-sigma' relation. On the other hand, evidence for "intermediate-mass" black holes (IMBHs, with masses in the range 1^2 - 10^5 M_sun) is relatively sparse, with only a few mass measurements reported in globular clusters (GCs), dwarf galaxies and low-mass AGNs. We explore the question of whether globular clusters extend the M-sigma relationship for galaxies to lower black hole masses and find that available data for globular clusters are consistent with the extrapolation of this relationship. We use this extrapolated M-sigma relationship to predict the putative black hole masses of those globular clusters where existence of central IMBH was proposed. We discuss how globular clusters can be used as a constraint on theories making specific predictions for the low-mass end of the M-sigma relation.Comment: 14 pages, 3 figures, accepted for publication in Astrophysics and Space Science; fixed typos and a quote in Sec.
    corecore