157 research outputs found

    Stage-Specific Plasticity in Ovary Size Is Regulated by Insulin/Insulin-Like Growth Factor and Ecdysone Signaling in Drosophila

    Get PDF
    Animals from flies to humans adjust their development in response to environmental conditions through a series of developmental checkpoints, which alter the sensitivity of organs to environmental perturbation. Despite their importance, we know little about the molecular mechanisms through which this change in sensitivity occurs. Here we identify two phases of sensitivity to larval nutrition that contribute to plasticity in ovariole number, an important determinant of fecundity, in Drosophila melanogaster. These two phases of sensitivity are separated by the developmental checkpoint called "critical weight"; poor nutrition has greater effects on ovariole number in larvae before critical weight than after. We find that this switch in sensitivity results from distinct developmental processes. In precritical weight larvae, poor nutrition delays the onset of terminal filament cell differentiation, the starting point for ovariole development, and strongly suppresses the rate of terminal filament addition and the rate of increase in ovary volume. Conversely, in postcritical weight larvae, poor nutrition affects only the rate of increase in ovary volume. Our results further indicate that two hormonal pathways, the insulin/insulin-like growth factor and the ecdysone-signaling pathways, modulate the timing and rates of all three developmental processes. The change in sensitivity in the ovary results from changes in the relative contribution of each pathway to the rates of terminal filament addition and increase in ovary volume before and after critical weight. Our work deepens our understanding of how hormones act to modify the sensitivity of organs to environmental conditions, thereby affecting their plasticity.NICHD; University of Iowa; FCT fellowship (SFRH/BD/51624/2011); Fundação Calouste Gulbenkian; Instituto Gulbenkian de Ciência

    Coordinating morphology with behavior during development: an integrative approach from a fly perspective

    Get PDF
    Animals in the wild live in highly variable and unpredictable environments. This variation in their habitat induces animals, at all stages of their development, to make decisions about what to eat, where to live, and with whom to associate. Additionally, animals like insects show dramatic restructuring of their morphology across life stages, which is accompanied by alterations in their behavior to match stage-specific functions. Finally, in a process called developmental plasticity, environmental conditions feed back onto developmental mechanisms producing animals with stage-specific variation in both morphological and behavioral traits. In this review, we use examples from insects to explore the idea that animals are integrated units where stage-specific morphological and neurological traits develop together to increase individual fitness within their natural environments. We hypothesize that the same mechanisms act to alter both morphological and behavioral traits in response to the environment in which an organism develops. For example, in insects the steroid hormone ecdysone orchestrates the restructuring of the body from larva to adult form during metamorphosis at the same time as it rebuilds the central nervous system. The remodeling of both body form and nervous system structure results in behavioral alterations that match the morphological functions of the emerging adult. We review relevant findings from the fruit fly Drosophila melanogaster, combining insights from different fields like developmental biology, neurobiology and developmental plasticity. Finally, we highlight how insights drawn from D. melanogaster can be used as a model in future efforts to understand how developmental processes modify behavioral responses to environmental change in a stage-specific manner in other animals.info:eu-repo/semantics/publishedVersio

    Mechanisms regulating nutrition-dependent developmental plasticity through organ-specific effects in insects

    Get PDF
    Nutrition, via the insulin/insulin-like growth factor (IIS)/Target of Rapamycin (TOR) signaling pathway, can provide a strong molding force for determining animal size and shape. For instance, nutrition induces a disproportionate increase in the size of male horns in dung and rhinoceros beetles, or mandibles in staghorn or horned flour beetles, relative to body size. In these species, well-fed male larvae produce adults with greatly enlarged horns or mandibles, whereas males that are starved or poorly fed as larvae bear much more modest appendages. Changes in IIS/TOR signaling plays a key role in appendage development by regulating growth in the horn and mandible primordia. In contrast, changes in the IIS/TOR pathway produce minimal effects on the size of other adult structures, such as the male genitalia in fruit flies and dung beetles. The horn, mandible and genitalia illustrate that although all tissues are exposed to the same hormonal environment within the larval body, the extent to which insulin can induce growth is organ specific. In addition, the IIS/TOR pathway affects body size and shape by controlling production of metamorphic hormones important for regulating developmental timing, like the steroid molting hormone ecdysone and sesquiterpenoid hormone juvenile hormone. In this review, we discuss recent results from Drosophila and other insects that highlight mechanisms allowing tissues to differ in their sensitivity to IIS/TOR and the potential consequences of these differences on body size and shape.FCT fellowships, Fundação Calouste Gulbenkian

    The proximate sources of genetic variation in body size plasticity: The relative contributions of feeding behaviour and development in Drosophila melanogaster

    Get PDF
    Body size is a key life-history trait that influences many aspects of an animal’s biology and is shaped by a variety of factors, both genetic and environmental. While we know that locally-adapted populations differ in the extent to which body size responds plastically to environmental conditions like diet, we have a limited understanding of what causes these differences. We hypothesized that populations could differ in the way body size responds to nutrition either by modulating growth rate, development time, feeding rate, or a combination of the above. Using three locally-adapted populations of Drosophila melanogaster from along the east coast of Australia, we investigated body size plasticity across five different diets. We then assessed how these populations differed in feeding behaviour and developmental timing on each of the diets. We observed population-specific plastic responses to nutrition for body size and feeding rate, but not development time. However, differences in feeding rate did not fully explain the differences in the way body size responded to diet. Thus, we conclude that body size variation in locally-adapted populations is shaped by a combination of growth rate and feeding behaviour. This paves the way for further studies that explore how differences in the regulation of the genetic pathways that control feeding behaviour and growth rate contribute to population-specific responses of body size to diet

    Coordinating Development: How Do Animals Integrate Plastic and Robust Developmental Processes?

    Get PDF
    Our developmental environment significantly affects myriad aspects of our biology, including key life history traits, morphology, physiology, and our susceptibility to disease. This environmentally-induced variation in phenotype is known as plasticity. In many cases, plasticity results from alterations in the rate of synthesis of important developmental hormones. However, while developmental processes like organ growth are sensitive to environmental conditions, others like patterning – the process that generates distinct cell identities – remain robust to perturbation. This is particularly surprising given that the same hormones that regulate organ growth also regulate organ patterning. In this review, we revisit the current approaches that address how organs coordinate their growth and pattern, and outline our hypotheses for understanding how organs achieve correct pattern across a range of sizes

    The sex-specific effects of diet quality versus quantity on morphology in Drosophila melanogaster

    Get PDF
    This deposit is composed by the main article plus the supplementary materials of the publication.Variation in the quality and quantity of nutrition is a major contributor to phenotypic variation in animal populations. Although we know much of how dietary restriction impacts phenotype, and of the molecular-genetic and physiological mechanisms that underlie this response, we know much less of the effects of dietary imbalance. Specifically, although dietary imbalance and restriction both reduce overall body size, it is unclear whether both have the same effect on the size of individual traits. Here, we use the fruit fly Drosophila melanogaster to explore the effect of dietary food versus protein-to-carbohydrate ratio on body proportion and trait size. Our results indicate that body proportion and trait size respond differently to changes in diet quantity (food concentration) versus diet quality (protein-to-carbohydrate ratio), and that these effects are sex specific. While these differences suggest that Drosophila use at least partially distinct developmental mechanisms to respond to diet quality versus quantity, further analysis indicates that the responses can be largely explained by the independent and contrasting effects of protein and carbohydrate concentration on trait size. Our data highlight the importance of considering macronutrient composition when elucidating the effect of nutrition on trait size, at the levels of both morphology and developmental physiology.National Science Foundation grants: (IOS-1557638, IOS-0919855); Lake Forest College.info:eu-repo/semantics/publishedVersio

    Ecdysone promotes growth of imaginal discs through the regulation of Thor in D. melanogaster

    Get PDF
    Animals have a determined species-specific body size that results from the combined action of hormones and signaling pathways regulating growth rate and duration. In Drosophila, the steroid hormone ecdysone controls developmental transitions, thereby regulating the duration of the growth period. Here we show that ecdysone promotes the growth of imaginal discs in mid-third instar larvae, since imaginal discs from larvae with reduced or no ecdysone synthesis are smaller than wild type due to smaller and fewer cells. We show that insulin-like peptides are produced and secreted normally in larvae with reduced ecdysone synthesis, and upstream components of insulin/insulin-like signaling are activated in their discs. Instead, ecdysone appears to regulate the growth of imaginal discs via Thor/4E-BP, a negative growth regulator downstream of the insulin/insulin-like growth factor/Tor pathways. Discs from larvae with reduced ecdysone synthesis have elevated levels of Thor, while mutations in Thor partially rescue their growth. The regulation of organ growth by ecdysone is evolutionarily conserved in hemimetabolous insects, as shown by our results obtained using Blattella germanica. In summary, our data provide new insights into the relationship between components of the insulin/insulin-like/Tor and ecdysone pathways in the control of organ growth.Spanish Ministry of Science and Consolider program grants: (BFU-2008-01884, BFU2011-25986, CSD2007-008-25120, BFU2009-10571 and BES-2009-016077); Departments of Education and Industry of the Basque Government grant: (PI2012/42); Bizkaia County; Instituto Gulbenkian de Ciência/Fundação Calouste Gulbenkian; Fundação Para a Ciência e a Tecnologia fellowship: (SFRH/BD/51181/2010)

    Juvenile hormone regulates body size and perturbs insulin signaling in Drosophila

    Get PDF
    The role of juvenile hormone (JH) in regulating the timing and nature of insect molts is well-established. Increasing evidence suggests that JH is also involved in regulating final insect size. Here we elucidate the developmental mechanism through which JH regulates body size in developing Drosophila larvae by genetically ablating the JH-producing organ, the corpora allata (CA). We found that larvae that lack CA pupariated at smaller sizes than control larvae due to a reduced larval growth rate. Neither the timing of the metamorphic molt nor the duration of larval growth was affected by the loss of JH. Further, we show that the effects of JH on growth rate are dependent on the forkhead box O transcription factor (FOXO), which is negatively regulated by the insulin-signaling pathway. Larvae that lacked the CA had elevated levels of FOXO activity, whereas a loss-of-function mutation of FOXO rescued the effects of CA ablation on final body size. Finally, the effect of JH on growth appears to be mediated, at least in part, via ecdysone synthesis in the prothoracic gland. These results indicate a role of JH in regulating growth rate via the ecdysone- and insulin-signaling pathways.National Science Foundation Grants: (IOS-0919855, IOS-084584), Howard Hughes Medical Institute, Fundação Calouste Gulbenkian, FCT : [SFRH/Bolsas de Pós-Doutoramento (BPD)/74313/2010]

    A Switch in the Control of Growth of the Wing Imaginal Disks of Manduca sexta

    Get PDF
    Background: Insulin and ecdysone are the key extrinsic regulators of growth for the wing imaginal disks of insects. In vitro tissue culture studies have shown that these two growth regulators act synergistically: either factor alone stimulates only limited growth, but together they stimulate disks to grow at a rate identical to that observed in situ. It is generally thought that insulin signaling links growth to nutrition, and that starvation stops growth because it inhibits insulin secretion. At the end of larval life feeding stops but the disks continue to grow, so at that time disk growth has become uncoupled from nutrition. We sought to determine at exactly what point in development this uncoupling occurs. Methodology: Growth and cell proliferation in the wing imaginal disks and hemolymph carbohydrate concentrations were measured at various stages in the last larval instar under experimental conditions of starvation, ligation, rescue, and hormone treatment. Principal Findings: Here we show that in the last larval instar of M. sexta, the uncoupling of nutrition and growth occurs as the larva passes the critical weight. Before this time, starvation causes a decline in hemolymph glucose and trehalose and a cessation of wing imaginal disks growth, which can be rescued by injections of trehalose. After the critical weight the trehalose response to starvation disappears, and the expression of insulin becomes decoupled from nutrition. After the critical weight the wing disks loose their sensitivity to repression by juvenile hormone, and factors from the abdomen, bu

    An assessment of hydrocarbon species in the methanol-to-hydrocarbon reaction over a ZSM-5 catalyst.

    Get PDF
    A ZSM-5 catalyst is examined in relation to the methanol-to-hydrocarbon (MTH) reaction as a function of reaction temperature and time-on-stream. The reaction profile is characterised using in-line mass spectrometry. Furthermore, the material contained within a catch-pot downstream from the reactor is analysed using gas chromatography-mass spectrometry. For a fixed methanol feed, reaction conditions are selected to define various stages of the reaction coordinate: (i) initial methanol adsorption at a sub-optimum reaction temperature (1 h at 200 °C); (ii) initial stages of reaction at an optimised reaction temperature (1 h at 350 °C); (iii) steady-state operation at an optimised reaction temperature (3 days at 350 °C); and (iv) accelerated ageing (3 days at 400 °C). Post-reaction, the catalyst samples are analysed ex situ by a combination of temperature-programmed oxidation (TPO) and spectroscopically by electron paramagnetic resonance (EPR), diffuse-reflectance infrared and inelastic neutron scattering (INS) spectroscopies. The TPO measurements provide an indication of the degree of 'coking' experienced by each sample. The EPR measurements detect aromatic radical cations. The IR and INS measurements reveal the presence of retained hydrocarbonaceous species, the nature of which are discussed in terms of the well-developed 'hydrocarbon pool' mechanism. This combination of experimental evidence, uniquely applied to this reaction system, establishes the importance of retained hydrocarbonaceous species in effecting the product distribution of this economically relevant reaction system
    corecore