7 research outputs found

    The influence of image reconstruction on two-dimensional spectrograms of the solar photosphere

    No full text
    Aims.We present a spectral analysis of small-scale structures in the solar photosphere and investigate the influence of the speckle deconvolution technique on the line profiles. Methods. A short sequence of two-dimensional spectra is used, taken with the Telecentric Etalon Solar Spectrometer (TESOS) at the German Vacuum Tower Telescope on Tenerife. We observed two small pores surrounded by disturbed and by regular granulation in the non-magnetic neutral Iron line at 557.6 nm. In a first step, a speckle reconstruction is computed by applying an extended Knox-Thompson algorithm to the broad-band data. In a second step, the individual narrow-band filtergrams are deconvolved utilizing the information gained in the first step. We then perform a spectral analysis of the 2D spectra and compare the results obtained with the raw and the restored data. Results.Important spectral quantities, e.g. line position, line depression and line asymmetry are largely unchanged by the image reconstruction process. We derive the line asymmetry and the line-of-sight flow for granules and intergranular lanes and also for an isolated G-band bright point and find important differences between quiet and magnetically disturbed granulation: the granule centers in the quiet region show a strong asymmetry with significant blue shift (300 m/s) toward deeper layers, while the velocity in the disturbed area show virtually no height dependence. For the intergranular lanes the situation is reversed: no height dependence in the quiet area, significant red-shift toward deeper layers in the disturbed part. An isolated G-band bright point does not show any line-of-sight motion relative to its immediate surroundings. The map of LOS velocities derived from line-wing shifts shows a significant downflow around one of the pores measured in deep layers of the photosphere. Conclusions.In most cases we do not find any artefacts in the reconstructed line profiles that would compromise their usage for quantitative spectroscopy

    Application of speckle and (multi-object) multi-frame blind deconvolution techniques on imaging and imaging spectropolarimetric data

    No full text
    We test the effects of reconstruction techniques on 2D data to determine the best approach. We obtained a time-series of spectropolarimetric data in the Fe I line at 630.25 nm with the Goettingen Fabry-Perot Interferometer (FPI) that are accompanied by imaging data at 431.3 nm and Ca II H. We apply both speckle and (MO)MFBD techniques. We compare the spatial resolution and investigate the impact of the reconstruction on spectral characteristics. The speckle reconstruction and MFBD perform similar for our imaging data with nearly identical intensity contrasts. MFBD provides a better and more homogeneous resolution at the shortest wavelength. The MOMFBD and speckle deconvolution of the intensity spectra lead to similar results, but our choice of settings for the MOMFBD yields an intensity contrast smaller by about 2% at a comparable spatial resolution. None of the reconstruction techniques introduces artifacts in the intensity spectra. The speckle deconvolution (MOMFBD) has a rms noise in V/I of 0.32% (0.20%). The deconvolved spectra thus require a high significance threshold of about 1.0%. A comparison to spectra with a significantly higher S/N ratio and to spectra from a MHD simulation reveals that the Goettingen FPI can only detect about 30% of the polarization signal in quiet Sun. The distribution of NCP values for the speckle-deconvolved data matches that of observations with higher S/N better than MOMFBD, but shows seemingly artificially sharp boundaries and unexpected changes of the sign. For the spectropolarimetric data, the higher intensity contrast of the speckle deconvolution is balanced by the smaller amplification of the noise level in the MOMFBD at a comparable spatial resolution. The noise level prevents the detection of weak and diffuse magnetic fields.Comment: 17 pages, 18 figures, A&A accepte

    Observations of Photospheric Dynamics and Magnetic Fields: From Large-Scale to Small-Scale Flows

    No full text
    International audienceThis paper reviews solar flows and magnetic fields observed at the photospheric level. We first present the context in which these observations are performed. We describe the various temporal and spatial scales involved, and the coupling between them. Then we present small-scale flows, mainly supergranulation and flows around active regions. Flows at the global scale are then reviewed, again with emphasis on the flows, i.e. differential rotation, torsional oscillation and meridional circulation. In both small- and global-scale we discuss the coupling between flow fields and magnetic field and give an overview of observational techniques. Finally, the possible connection between studies of solar activity and stellar activity is briefly discussed

    Observations of Photospheric Dynamics and Magnetic Fields: From Large-Scale to Small-Scale Flows

    No full text
    corecore