37 research outputs found

    Innovation platforms for improving productivity in mixed farming systems in Ethiopia: Institutions and modalities

    Get PDF

    Determinants and Levels of Agricultural Development Agents Job Satisfaction: The Case of Kalu Woreda, South Wollo Zone of the Amhara National Regional State

    Get PDF
    This study was conducted with an objective of assessing the level of job satisfaction and its determinants among agricultural development agents working in different kebeles of Kalu Woreda, South Wollo Zone of the Amhara National Regional State. A total of 100 development agents were selected and interviewed using simple random sampling technique to collect data for the study through structured questionnaire. Descriptive and multiple regression methods were used to address the study objectives. Results of descriptive analysis showed that in terms of the level of job satisfaction of development agents on average development agents are 'undecided' with their job as a result of their involvement in special projects such as agriculture growth projects and donor-funded projects, in decision making, in in-service training and working relationship with farmers. The econometric results showed that there exists a statistically significant relationship between job satisfaction and recognition for best performances, rate of promotion, regular training and level of education of development agents. The study recommends that due attention needs to be given to defining career structure and provision of service training opportunities as criteria in promoting, improving and maintaining their job satisfaction.Keywords: Job satisfaction, Development agen

    Exploring black soldier fly frass as novel fertilizer for improved growth, yield, and nitrogen use efficiency of maize under field conditions

    Get PDF
    Open Access Journal; Published online: 23 Sept 2020Black soldier fly frass fertilizer (BSFFF) is increasingly gaining momentum worldwide as organic fertilizer. However, research on its performance on crop production remains largely unknown. Here, we evaluate the comparative performance of BSFFF and commercial organic fertilizer (SAFI) on maize (H513) production. Both fertilizers were applied at the rates of 0, 2.5, 5, and 7.5 t ha-1, and 0, 30, 60, and 100 kg nitrogen (N) ha-1. Mineral fertilizer (urea) was also applied at 0, 30, 60 and 100 kg N ha-1 to establish the N fertilizer equivalence (NFE) of the organic fertilizers. Maize grown in plots treated with BSFFF had the tallest plants and highest chlorophyll concentrations. Plots treated with 7.5 t ha-1 of BSFFF had 14% higher grain yields than plots treated with a similar rate of SAFI. There was a 27% and 7% increase in grain yields in plots treated with 100 kg N ha-1 of BSFFF compared to those treated with equivalent rates of SAFI and urea fertilizers, respectively. Application of BSFFF at 7.5 t ha-1 significantly increased N uptake by up to 23% compared to the equivalent rate of SAFI. Likewise, application of BSFFF at 100 kg N ha-1 increased maize N uptake by 76% and 29% compared to SAFI and urea, respectively. Maize treated with BSFFF at 2.5 t ha-1 and 30 kg N ha-1 had higher nitrogen recovery efficiencies compared to equivalent rates of SAFI. The agronomic N use efficiency (AEN) of maize treated with 2.5 t ha-1 of BSFFF was 2.4 times higher than the value achieved using an equivalent rate of SAFI. Also, the AEN of maize grown using 30 kg N ha-1 was 27% and 116% higher than the values obtained using equivalent rates of SAFI and urea fertilizers, respectively. The NFE of BSFFF (108%) was 2.5 times higher than that of SAFI. Application rates of 2.5 t ha-1 and 30 kg N ha-1 of BSFFF were found to be effective in improving maize yield, while double rates of SAFI were required. Our findings demonstrate that BSFFF is a promising and sustainable alternative to commercial fertilizers for increased maize production

    Evolving dynamics of insect frass fertilizer for sustainable nematode management and potato production

    Get PDF
    Potato production faces major challenges from inadequate soil fertility, and nematode infestation, yet synthetic fertilizers and nematicides are costly and harmful to the environment. This study explored the potential of chitin-fortified black soldier fly-composted organic fertilizer (BSFCOF) as a multipurpose organic fertilizer amendment for enhancing potato yield and suppressing potato cyst nematodes (PCN). The BSFCOF was applied at a rate equivalent to 150 kg N ha-1 and fortified with chitin from black soldier fly pupal exuviae at inclusion rates equivalent to 0.5, 1, 2, 3, 4 and 5% chitin. Data were collected on potato growth characteristics, PCN population densities, and soil chemical properties for two growing cycles. Results showed that chitin fortified BSFCOF significantly improved potato growth parameters, chlorophyll concentration, marketable tuber yield and number of marketable tubers. The marketable tuber yield achieved using chitin-fortified BSFCOF was 70 – 362%, and 69 – 238% higher than the values achieved using unfertilized soil during the first and second growing cycles, respectively. Soil amendment with chitin-fortified BSFCOF significantly reduced the number of cysts per 200 g soil-1, number of eggs and J2 per cyst-1, eggs g-1 soil and reproduction rate by 32 – 87%, 9 – 92%, 31– 98% and 31 – 98%, respectively. The PCN suppression increased with chitin inclusion rates. There were significantly higher values for soil pH, ammonium nitrogen, nitrate nitrogen, available phosphorus, calcium, magnesium, potassium, and cation exchange capacity in soil amended with BSFCOF compared to unamended soil. This study demonstrates that BSFCOF fortified with 5% chitin is an effective soil enhancer with multiple benefits, including improved soil fertility, potato performance, and effective management of potato cyst nematodes

    Harnessing data science to improve integrated management of invasive pest species across Africa: an application to Fall armyworm (Spodoptera frugiperda) (J.E. Smith) (Lepidoptera: Noctuidae)

    Get PDF
    Open Access Journal; Published online: 11 Feb 2022After five years of its first report on the African continent, Fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) is considered a major threat to maize, sorghum, and millet production in sub-Saharan Africa. Despite the rigorous work already conducted to reduce FAW prevalence, the dynamics and invasion mechanisms of FAW in Africa are still poorly understood. This study applied interdisciplinary tools, analytics, and algorithms on a FAW dataset with a spatial lens to provide insights and project the intensity of FAW infestation across Africa. The data collected between January 2018 and December 2020 in selected locations were matched with the monthly average data of the climatic and environmental variables. The multilevel analytics aimed to identify the key factors that influence the dynamics of spatial and temporal pest density and occurrence at a 2 km x 2 km grid resolution. The seasonal variations of the identified factors and dynamics were used to calibrate rule-based analytics employed to simulate the monthly densities and occurrence of the FAW for the years 2018, 2019, and 2020. Three FAW density level classes were inferred, i.e., low (0–10 FAW moth per trap), moderate (11–30 FAW moth per trap), and high (>30 FAW moth per trap). Results show that monthly density projections were sensitive to the type of FAW host vegetation and the seasonal variability of climatic factors. Moreover, the diversity in the climate patterns and cropping systems across the African sub-regions are considered the main drivers of FAW abundance and variation. An optimum overall accuracy of 53% was obtained across the three years and at a continental scale, however, a gradual increase in prediction accuracy was observed among the years, with 2020 predictions providing accuracies greater than 70%. Apart from the low amount of data in 2018 and 2019, the average level of accuracy obtained could also be explained by the non-inclusion of data related to certain key factors such as the influence of natural enemies (predators, parasitoids, and pathogens) into the analysis. Further detailed data on the occurrence and efficiency of FAW natural enemies in the region may help to complete the tri-trophic interactions between the host plants, pests, and beneficial organisms. Nevertheless, the tool developed in this study provides a framework for field monitoring of FAW in Africa that may be a basis for a future decision support system (DSS)

    Bacteria-inducing legume nodules involved in the improvement of plant growth, health and nutrition

    Get PDF
    Bacteria-inducing legume nodules are known as rhizobia and belong to the class Alphaproteobacteria and Betaproteobacteria. They promote the growth and nutrition of their respective legume hosts through atmospheric nitrogen fixation which takes place in the nodules induced in their roots or stems. In addition, rhizobia have other plant growth-promoting mechanisms, mainly solubilization of phosphate and production of indoleacetic acid, ACC deaminase and siderophores. Some of these mechanisms have been reported for strains of rhizobia which are also able to promote the growth of several nonlegumes, such as cereals, oilseeds and vegetables. Less studied are the mechanisms that have the rhizobia to promote the plant health; however, these bacteria are able to exert biocontrol of some phytopathogens and to induce the plant resistance. In this chapter, we revised the available data about the ability of the legume nodule-inducing bacteria for improving the plant growth, health and nutrition of both legumes and nonlegumes. These data showed that rhizobia meet all the requirements of sustainable agriculture to be used as bio-inoculants allowing the total or partial replacement of chemicals used for fertilization or protection of crops

    Predicting the environmental suitability for onchocerciasis in Africa as an aid to elimination planning

    Get PDF
    Recent evidence suggests that, in some foci, elimination of onchocerciasis from Africa may be feasible with mass drug administration (MDA) of ivermectin. To achieve continental elimination of transmission, mapping surveys will need to be conducted across all implementation units (IUs) for which endemicity status is currently unknown. Using boosted regression tree models with optimised hyperparameter selection, we estimated environmental suitability for onchocerciasis at the 5 × 5-km resolution across Africa. In order to classify IUs that include locations that are environmentally suitable, we used receiver operating characteristic (ROC) analysis to identify an optimal threshold for suitability concordant with locations where onchocerciasis has been previously detected. This threshold value was then used to classify IUs (more suitable or less suitable) based on the location within the IU with the largest mean prediction. Mean estimates of environmental suitability suggest large areas across West and Central Africa, as well as focal areas of East Africa, are suitable for onchocerciasis transmission, consistent with the presence of current control and elimination of transmission efforts. The ROC analysis identified a mean environmental suitability index of 0.71 as a threshold to classify based on the location with the largest mean prediction within the IU. Of the IUs considered for mapping surveys, 50.2% exceed this threshold for suitability in at least one 5×5-km location. The formidable scale of data collection required to map onchocerciasis endemicity across the African continent presents an opportunity to use spatial data to identify areas likely to be suitable for onchocerciasis transmission. National onchocerciasis elimination programmes may wish to consider prioritising these IUs for mapping surveys as human resources, laboratory capacity, and programmatic schedules may constrain survey implementation, and possibly delaying MDA initiation in areas that would ultimately qualify
    corecore