1,020 research outputs found

    Cool Stars and Space Weather

    Full text link
    Stellar flares, winds and coronal mass ejections form the space weather. They are signatures of the magnetic activity of cool stars and, since activity varies with age, mass and rotation, the space weather that extra-solar planets experience can be very different from the one encountered by the solar system planets. How do stellar activity and magnetism influence the space weather of exoplanets orbiting main-sequence stars? How do the environments surrounding exoplanets differ from those around the planets in our own solar system? How can the detailed knowledge acquired by the solar system community be applied in exoplanetary systems? How does space weather affect habitability? These were questions that were addressed in the splinter session "Cool stars and Space Weather", that took place on 9 Jun 2014, during the Cool Stars 18 meeting. In this paper, we present a summary of the contributions made to this session.Comment: Proceedings of the 18th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, Eds G. van Belle & H. Harris, 13 pages, 1 figur

    FÖRSTER TRANSFER CALCULATIONS BASED ON CRYSTAL STRUCTURE DATA FROM Agmenellum quadruplicatum C-PHYCOCYANIN

    Get PDF
    Excitation energy transfer in C-phycocyanin is modeled using the Forster inductive resonance mechanism. Detailed calculations are carried out using coordinates and orientations of the chromophores derived from X-ray crystallographic studies of C-phycocyanin from two different species (Schirmer et al, J. Mol. Biol. 184, 257–277 (1985) and ibid., 188, 651-677 (1986)). Spectral overlap integrals are estimated from absorption and fluorescence spectra of C-phycocyanin of Mastigocladus laminosus and its separated subunits. Calculations are carried out for the β-subunit, αβ-monomer, (αβ)3-trimer and (αβ)0-hexamer species with the following chromophore assignments: β155 = 's’(sensitizer), β84 =‘f (fluorescer) and α84 =‘m’(intermediate):]:. The calculations show that excitation transfer relaxation occurs to 3=98% within 200 ps in nearly every case; however, the rates increase as much as 10-fold for the higher aggregates. Comparison with experimental data on fluorescence decay and depolarization kinetics from the literature shows qualitative agreement with these calculations. We conclude that Forster transfer is sufficient to account for all of the observed fluorescence properties of C-phycocyanin in aggregation states up to the hexamer and in the absence of linker polypeptides

    Optical Properties of Superconducting Nanowire Single-Photon Detectors

    Full text link
    We measured the optical absorptance of superconducting nanowire single photon detectors. We found that 200-nm-pitch, 50%-fill-factor devices had an average absorptance of 21% for normally-incident front-illumination of 1.55-um-wavelength light polarized parallel to the nanowires, and only 10% for perpendicularly-polarized light. We also measured devices with lower fill-factors and narrower wires that were five times more sensitive to parallel-polarized photons than perpendicular-polarized photons. We developed a numerical model that predicts the absorptance of our structures. We also used our measurements, coupled with measurements of device detection efficiencies, to determine the probability of photon detection after an absorption event. We found that, remarkably, absorbed parallel-polarized photons were more likely to result in detection events than perpendicular-polarized photons, and we present a hypothesis that qualitatively explains this result. Finally, we also determined the enhancement of device detection efficiency and absorptance due to the inclusion of an integrated optical cavity over a range of wavelengths (700-1700 nm) on a number of devices, and found good agreement with our numerical model.Comment: will appear in optics express with minor revision

    Low-energy muon-transfer reaction from hydrogen isotopes to helium isotopes

    Get PDF
    Direct muon transfer in low-energy collisions of the muonic hydrogen Hμ_\mu and helium (He++^{++}) is considered in a three-body quantum-mechanical framework of coordinate-space integro-differential Faddeev-Hahn-type equations within two- and six-state close coupling approximations. The final-state Coulomb interaction is treated without any approximation employing appropriate Coulomb waves in the final state. The present results agree reasonably well with previous semiclassical calculations.Comment: 4 revtex4 page

    Evolution of the progenitor binary of V1309 Scorpii before merger

    Full text link
    It was recently demonstrated that the eruption of V1309 Sco was a result of a merger of the components of a cool contact binary. We computed a set of evolutionary models of the detached binaries with different initial parameters to compare it with pre-burst observations of V1309 Sco. The models are based on our recently developed evolutionary model of the formation of cool contact binaries. The best agreement with observations was obtained for binaries with initial masses of 1.8-2.0 solar masses and initial periods of 2.5-3.1 d. The evolution of these binaries consists of three phases: at first the binary is detached and both components lose mass and angular momentum through a magnetized wind. This takes almost two thirds of the total evolutionary lifetime. The remaining third is spent in a semi-detached configuration of the Algol-type, following the Roche-lobe overflow by the initially more massive component. When the other component leaves the main sequence and moves toward the giant branch, a contact configuration is formed for a short time, followed by the coalescence of both components.Comment: 5 pages, 1 figure, Astronomy and Astrophysics, in prin

    The Chiral Phase Transition in Dissipative Dynamics

    Get PDF
    Numerical simulations of the chiral phase transition in the (3+1)dimensional O(4)-model are presented. The evolutions of the chiral field follow purely dissipative dynamics, starting from random chirally symmetric initial configurations down to the true vacuum with spontaneously broken symmetry. The model stabilizes topological textures which are formed together with domains of disoriented chiral condensate (DCC) during the roll-down phase. The classically evolving field acts as source for the emission of pions and σ\sigma mesons. The exponents of power laws for the growth of angular correlations and for emission rates are extracted. Fluctuations in the abundance ratios for neutral and charged pions are compared with those for uncorrelated sources as potential signature for the chiral phase transition after heavy-ion collisions. It is found that the presence of stabilizing textures (baryons and antibaryons) prevents sufficiently rapid growth of DCC-domain size, so observability of anomalous tails in the abundance ratios is unlikely. However, the transient formation of growing DCC domains causes sizable broadening of the distributions as compared to the statistical widths of generic sources.Comment: 28 pages, 8 figure

    Broadband mid-IR frequency comb with CSP and AGS from a Er,Tm:Ho fiber laser

    Get PDF
    We report on the generation of a 2500 nm bandwidth frequency comb at 6.5 μm central wavelength based on critically phase-matched parametric down-conversion in the nonlinear crystal CdSiP 2 CdSiP2 (CSP), driven by a compact Er,Tm:Ho fiber laser. The generated ultra-broadband pulses show a transform-limited duration of 2.3 optical cycles and carry up to 150 pJ of energy at a 100 MHz pulse repetition rate. For comparison, the spectrum generated in AgGaS 2 AgGaS2 (AGS) spans from 6.2 to 7.4 μm at full-width at half-maximum (FWHM) with a pulse energy of 3 pJ. A full 3D nonlinear wave propagation code is used for optimization of the noncollinear angle, propagation direction, and crystal thickness.Peer ReviewedPostprint (author's final draft

    DCC Dynamics in (2+1)D-O(3) model

    Get PDF
    The dynamics of symmetry-breaking after a quench is numerically simulated on a lattice for the (2+1)-dimensional O(3) model. In addition to the standard sigma-model with temperature-dependent Phi^4-potential the energy functional includes a four-derivative current-current coupling to stabilize the size of the emerging extended topological textures. The total winding number can be conserved by constraint. As a model for the chiral phase transition during the cooling phase after a hadronic collision this allows to investigate the interference of 'baryon-antibaryon' production with the developing disoriented aligned domains. The growth of angular correlations, condensate, average orientation is studied in dependence of texture size, quench rate, symmetry breaking. The classical dissipative dynamics determines the rate of energy emitted from the relaxing source for each component of the 3-vector field which provides a possible signature for domains of Disoriented Chiral Condensate. We find that the 'pions' are emitted in two distinct pulses; for sufficiently small lattice size the second one carries the DCC signal, but it is strongly suppressed as compared to simultaneous 'sigma'-meson emission. We compare the resulting anomalies in the distributions of DCC pions with probabilities derived within the commonly used coherent state formalism.Comment: 27 pages, 17 figures; several minor insertions in the text; two references adde

    Theories for multiple resonances

    Get PDF
    Two microscopic theories for multiple resonances in nuclei are compared, n-particle-hole RPA and quantized Time-Dependent Hartree-Fock (TDHF). The Lipkin-Meshkov-Glick model is used as test case. We find that quantized TDHF is superior in many respects, except for very small systems.Comment: 14 Pages, 3 figures available upon request

    Основні закономірності зародження і росту втомних тріщин в алюмінієвих пластинах із зміцненими отворами

    Get PDF
    The method of modeling stress-strain state for holes burnishing using FEM has been analyzed. A series of fatigue tests were carried out using plates containing plain holes and cold expanded holes in aluminium For various diameters of holes and cold expansion degree there exists a certain correlation between the stress range or maximum stress on the edge of hole on the entrance face of plate and lifetime of fatigue crack initiation
    corecore