744 research outputs found

    Rapid neuronal differentiation of induced pluripotent stem cells for measuring network activity on micro-electrode arrays

    Get PDF
    Neurons derived from human induced Pluripotent Stem Cells (hiPSCs) provide a promising new tool for studying neurological disorders. In the past decade, many protocols for differentiating hiPSCs into neurons have been developed. However, these protocols are often slow with high variability, low reproducibility, and low efficiency. In addition, the neurons obtained with these protocols are often immature and lack adequate functional activity both at the single-cell and network levels unless the neurons are cultured for several months. Partially due to these limitations, the functional properties of hiPSC-derived neuronal networks are still not well characterized. Here, we adapt a recently published protocol that describes production of human neurons from hiPSCs by forced expression of the transcription factor neurogenin-212. This protocol is rapid (yielding mature neurons within 3 weeks) and efficient, with nearly 100% conversion efficiency of transduced cells (>95% of DAPI-positive cells are MAP2 positive). Furthermore, the protocol yields a homogeneous population of excitatory neurons that would allow the investigation of cell-type specific contributions to neurological disorders. We modified the original protocol by generating stably transduced hiPSC cells, giving us explicit control over the total number of neurons. These cells are then used to generate hiPSC-derived neuronal networks on micro-electrode arrays. In this way, the spontaneous electrophysiological activity of hiPSC-derived neuronal networks can be measured and characterized, while retaining interexperimental consistency in terms of cell density. The presented protocol is broadly applicable, especially for mechanistic and pharmacological studies on human neuronal networks

    Changes in disease characteristics and response rates among patients in the United Kingdom starting anti-tumour necrosis factor therapy for rheumatoid arthritis between 2001 and 2008

    Get PDF
    Objectives. Anti-TNF therapy has significantly improved outcomes for patients with severe RA. In the UK, changing financial restrictions and increasing experience with their use may have resulted in changes to the way physicians use anti-TNF therapies. The aim of this analysis was to examine changes in disease characteristics and response rates among patients starting anti-TNF therapy for RA over an 8-year period

    Effects of switching between anti-TNF therapies on HAQ response in patients who do not respond to their first anti-TNF drug

    Get PDF
    Objectives. Small studies have shown an improvement in disease activity in patients with RA who have switched between anti-TNF therapies for reasons of inefficacy. However, it is not clear whether switching improves longer term outcomes, such as disability. This analysis compares changes in HAQ scores 1 yr following lack of response to a first anti-TNF based on subsequent treatment during that year

    Efficacy and safety of anti-TNF therapies in psoriatic arthritis: an observational study from the British Society for Rheumatology Biologics Register

    Get PDF
    Objectives. To evaluate the risk–benefit profile of anti-TNF therapies in PsA and to study the predictors of treatment response and disease remission [disease activity score (DAS)-28 < 2.6]

    Metal transfer to sediments, invertebrates and fish following waterborne exposure to silver nitrate or silver sulfide nanoparticles in an indoor stream mesocosm.

    Get PDF
    The fate of engineered nanomaterials in ecosystems is unclear. An aquatic stream mesocosm was explored the fate and bioaccumulation of silver sulfide nanoparticles (Ag2S NPs) compared to silver nitrate (AgNO3). The aims were to determine the total Ag in water, sediment and biota, and to evaluate the bioavailable fractions of silver in the sediment using a serial extraction method. The total Ag in the water column from a nominal daily dose of 10 μg L-1 of Ag for the AgNO3 or Ag2S NP treatments reached a plateau of around 13 and 12 μg L-1, respectively, by the end of the study. Similarly, the sediment of both Ag-treatments reached ~380 μg Ag kg-1, and with most of it being acid-extractable/labile. The biota accumulated 4-59 μg Ag g-1 dw, depending on the type of Ag-treatment and organism. The oligochaete worm, Lumbriculus variegatus, accumulated Ag from the Ag2S exposure over time, which was similar to the AgNO3 treatment by the end of the experiment. The planarian, Girardia tigrina, and the chironomid larva, Chironomus riparius, showed much higher Ag concentrations than the oligochaete worms; and with a clearer time-dependent statistically significant Ag accumulation relative to the untreated controls. For the pulmonated snail, Physa acuta, bioaccumulation of Ag from AgNO3 and Ag2S NP exposures was observed, but was lower from the nano treatment. The AgNO3 exposure caused appreciable Ag accumulation in the water flea, Daphnia magna, but accumulation was higher in the Ag2S NP treatment (reaching 59 μg g-1 dw). In the rainbow trout, Oncorhynchus mykiss, AgNO3, but not Ag2S NPs, caused total Ag concentrations to increase in the tissues. Overall, the study showed transfer of total Ag from the water column to the sediment, and Ag bioaccumulation in the biota, with Ag from Ag2S NP exposure generally being less bioavailable than that from AgNO3

    Model-Based Selection for Proton Therapy in Breast Cancer:Development of the National Indication Protocol for Proton Therapy and First Clinical Experiences

    Get PDF
    Aims: Proton therapy is a radiation technique that yields less dose in normal tissues than photon therapy. In the Netherlands, proton therapy is reimbursed if the reduced dose to normal tissues is predicted to translate into a prespecified reduction in toxicity, based on nationally approved validated models. The aim of this paper is to present the development of a national indication protocol for proton therapy (NIPP) for model-based selection of breast cancer patients and to report on first clinical experiences. Materials and methods: A national proton therapy working group for breast cancer (PWG-BC) screened the literature for prognostic models able to estimate the individual risk of specific radiation-induced side-effects. After critical appraisal and selection of suitable models, a NIPP for breast cancer was written and subjected to comments by all stakeholders. The approved NIPP was subsequently introduced to select breast cancer patients who would benefit most from proton therapy. Results: The model of Darby et al. (N Engl J Med 2013; 368:987–82) was the only model fulfilling the criteria prespecified by the PWG-BC. The model estimates the relative risk of an acute coronary event (ACE) based on the mean heart dose. The absolute lifetime risk of ACE <80 years was calculated by applying this model to the Dutch absolute incidence of ACE for female and male patients, between 40 and 70 years at breast cancer radiotherapy, with/without cardiovascular risk factors. The NIPP was approved for reimbursement in January 2019. Based on a threshold value of a 2% absolute lower risk on ACE for proton therapy compared with photons, 268 breast cancer patients have been treated in the Netherlands with proton therapy between February 2019 and January 2021. Conclusion: The NIPP includes a model that allows the estimation of the absolute risk on ACE <80 years based on mean heart dose. In the first 2 years, 268 breast cancer patients have been treated with proton therapy in The Netherlands

    An isoform of Arabidopsis myosin XI interacts with small GTPases in its C-terminal tail region

    Get PDF
    Myosin XI, a class of myosins expressed in plants is believed to be responsible for cytoplasmic streaming and the translocation of organelles and vesicles. To gain further insight into the translocation of organelles and vesicles by myosin XI, an isoform of Arabidopsis myosin XI, MYA2, was chosen and its role in peroxisome targeting was examined. Using the yeast two-hybrid screening method, two small GTPases, AtRabD1 and AtRabC2a, were identified as factors that interact with the C-terminal tail region of MYA2. Both recombinant AtRabs tagged with His bound to the recombinant C-terminal tail region of MYA2 tagged with GST in a GTP-dependent manner. Furthermore, AtRabC2a was localized on peroxisomes, when its CFP-tagged form was expressed transiently in protoplasts prepared from Arabidopsis leaf tissue. It is suggested that MYA2 targets the peroxisome through an interaction with AtRabC2a
    corecore