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Abstract

Neurons derived from human induced Pluripotent Stem Cells (hiPSCs) provide a promising new tool for studying neurological disorders. In the
past decade, many protocols for differentiating hiPSCs into neurons have been developed. However, these protocols are often slow with high
variability, low reproducibility, and low efficiency. In addition, the neurons obtained with these protocols are often immature and lack adequate
functional activity both at the single-cell and network levels unless the neurons are cultured for several months. Partially due to these limitations,
the functional properties of hiPSC-derived neuronal networks are still not well characterized. Here, we adapt a recently published protocol that
describes production of human neurons from hiPSCs by forced expression of the transcription factor neurogenin-212. This protocol is rapid
(yielding mature neurons within 3 weeks) and efficient, with nearly 100% conversion efficiency of transduced cells (>95% of DAPI-positive cells
are MAP2 positive). Furthermore, the protocol yields a homogeneous population of excitatory neurons that would allow the investigation of cell-
type specific contributions to neurological disorders. We modified the original protocol by generating stably transduced hiPSC cells, giving us
explicit control over the total number of neurons. These cells are then used to generate hiPSC-derived neuronal networks on micro-electrode
arrays. In this way, the spontaneous electrophysiological activity of hiPSC-derived neuronal networks can be measured and characterized, while
retaining interexperimental consistency in terms of cell density. The presented protocol is broadly applicable, especially for mechanistic and
pharmacological studies on human neuronal networks.

Video Link

The video component of this article can be found at https://www.jove.com/video/54900/

Introduction

The development of human induced Pluripotent Stem Cells (hiPSCs) differentiation protocols to generate human neurons in vitro has provided
a powerful new tool for studying neurological disorders. Until recently, the study of these disorders was severely hampered by the lack of model
systems using human neurons. Although rodents can be used to study neurological disorders, the results of such studies cannot be translated
easily to humans1. Given these limitations, hiPSC-derived neurons are a promising alternative model that can be used to elucidate molecular
mechanisms underlying neurological disorders and for in vitro drug screening.

In the past decade, several protocols to convert hiPSCs into neurons have been developed2-8. However, these protocols are still limited in many
ways. First, the protocols are often time-consuming: generating neurons with adequate maturation (i.e. synapse formation) and functional activity
requires months of culturing procedures, which renders large-scale studies difficult9. In addition, hiPSC-to-neuron conversion efficiency is low.
Protocols often yield a heterogeneous population of neurons, and thus do not allow studies of specific subsets of neuronal cells. Moreover, the
protocols are not reproducible, yielding different results for different iPSC lines10,11. Lastly, the maturation stage and functional properties of the
resulting neurons are also variable 10.

To address these problems, Zhang et al. (2013)12 developed a protocol that rapidly and reproducibly generates human neurons from hiPSCs
by overexpressing the transcription factor neurogenin-2. As reported by the authors, differentiation occurs relatively quickly (only 2 - 3 weeks
after inducing expression of neurogenin-2), the protocol is reproducible (neuronal properties are independent of the starting hiPSC line), and
the hiPSC-to-neuron conversion is highly efficient (nearly 100%). The population of neurons generated with their protocol is homogeneous
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(resembling upper-layer cortical neurons), allowing the investigation of cell-type specific contributions to neuronal disorders. Furthermore, their
hiPSC-derived neurons exhibited mature properties (e.g., the capability to form synapses and robust functional activity) after only 20 d.

Characterizing the electrophysiological properties of hiPSC-derived neurons at the network level is an important prerequisite before hiPSC
technology can be exploited for the study of human diseases. For this reason, many research groups have recently begun to investigate stem-
cell-derived neurons at the network level using micro-electrode array (MEA) devices (Multichannel Systems, Reutlingen, Germany)13-16. The
electrodes of a MEA are embedded in a substrate on which neuronal cells can be cultured. MEAs can be used to explore the electrophysiological
properties of neuronal networks and the in vitro development of their activity. Currently, MEAs are used only in combination with differentiation
protocols that take several months to yield mature networks. Hence, combining MEAs with a rapid differentiation protocol should facilitate the use
of this technology in large-scale studies of neurological disorders.

Here, we present a modification of the Zhang et al. (2013)12 protocol and adapt it for use on MEAs. In particular, rather than relying on an acute
lentiviral transduction, we instead created hiPSC lines stably expressing rtTA/Ngn2 before inducing differentiation. We did this primarily to
have reproducible control over the neuronal cell density, since the neuronal cell density is critical for neuronal network formation, and for good
contact between the neurons and the electrodes of the MEA17,18. Although the Zhang et al. protocol is very efficient with respect to conversion
of transduced hiPSCs, it is inherently variable with respect to the final yield of neurons from the number of hiPSCs plated initially (see Figure
2E in Zhang et al.)12. With a stable line, we eliminate many issues causing variability, such as lentiviral toxicity and infection efficiency. We then
optimized the parameters that reliably produce hiPSC-derived neuronal networks on MEAs, obtaining network maturation (e.g., synchronous
events involving a majority of the channels) by the third week. This rapid and reliable protocol should enable direct comparisons between
neurons derived from different (i.e. patient-specific) hiPSC lines as well as provide robust consistency for pharmacological studies.

Protocol

All experiments on animals were carried out in accordance with the approved animal care and use guidelines of the Animal Care Committee,
Radboud University Medical Centre, the Netherlands, (RU-DEC-2011-021, protocol number: 77073).

1. Glia Cell Isolation and Culture

NOTE: The protocol presented here is based on the work of McCarthy and de Vellis19, and a very similar detailed protocol for mouse astrocytes is
available20. To generate primary cultures of cortical astrocytes from embryonic (E18) rat brains, a pregnant rat needs to be sacrificed, the embryos
need to be harvested from the uterus, and the brains need to be isolated from the embryos. To fill a T75 flask, the cortices from 2 embryonic brains
need to be combined. As an alternative, commercially available purified and frozen astrocytes can be purchased.

1. Prepare the T75 culture flask
1. Dilute Poly-D-Lysine (PDL) in sterile, ultrapure water to a final concentration of 10 µg/mL. Add 5 mL of the diluted PDL to the T75

culture flask. Swish around gently to wet the entire growth surface. Place the flask in a humidified 37 °C incubator for 3 h.
2. Aspirate the PDL from the flask. Rinse the flask 3x with 5 mL sterile water to remove unbound PDL. Aspirate the water completely.

Leave the flask to dry in a laminar flow hood or used immediately.

2. Dissection of the cortices
1. Prepare 50 mL dissection medium: Lebovitz's L-15 medium with 2% (v/v) B-27 supplement. Keep on ice.
2. Anesthetize the rat deeply with isoflurane in an induction chamber (small Plexiglas box) until respiration ceases (~5 - 8 min). Remove

rat from the induction chamber and immediately euthanized by cervical dislocation.
3. Spray the abdomen of the rat with 70% EtOH and wipe away the excess. Expose and remove the uterus from the dam via Caesarean

section using a pair of scissors21.
4. Cut individual embryos from their amniotic sacs with scissors, transfer to a sterile Petri dish filled with cold dissection medium, and

keep on ice.
5. Transfer embryos again to a new, sterile 6 cm Petri dish filled with cold dissection medium. Extract brains from the embryos under

a stereo microscope. To expose the brain, gently peel away the skin and skull using forceps. Gently scoop out the entire brain and
transfer to a 35 mm Petri dish with fresh, cold dissection medium.
 

NOTE: Whole brains dissected from embryos can be stored in dissection medium on ice for many hours without losing cellular viability.
6. Separate the two hemispheres of each brain by cutting through the midline with fine-tipped spring scissors or a scalpel. Carefully strip

off the meninges with straight fine-tipped forceps.
 

NOTE: It is very important to remove the meninges completely. This prevents fibroblast contamination of the astrocyte culture.
Fibroblasts are rapidly dividing cells and will eventually displace the other cells.

7. Remove the midbrain/striatum and the olfactory bulb with spring scissors or a scalpel. Also make sure to remove the hippocampus
(C-shaped structure that is perimedian and caudal with respect to the cortex) with spring scissors or a scalpel. Collect the cortical
hemispheres in a 15 mL centrifuge tube filled with 5 mL dissection medium. Keep on ice.

3. Dissociation of the cortices
1. Prepare 2 mL Ca2+/Mg2+-free Hank's Balanced Salt Solution (HBSS) with 0.25% trypsin (dissociation medium). Prepare 50 mL high-

glucose Dulbecco's Modified Eagle's Medium (DMEM) with 15% (v/v) Fetal Bovine Serum (FBS) and 1% (v/v) penicillin/streptomycin
(culture medium) and filter sterilize.

2. Let the tissue settle to the bottom of the centrifuge tube. Carefully aspirate as much of the dissection medium as possible from above
the tissue. Wash the tissue with 5 mL Ca2+/Mg2+-free HBSS (without trypsin) and allow the tissue to settle at the bottom of the tube.

3. Carefully aspirate the HBSS. Add 2 mL dissociation medium and flick the tube gently to mix the enzyme around the tissue. Incubate in
a 37 °C water bath for 5-10 min. Flick the tube a few times during incubation to agitate the tissue.

4. Immediately triturate the tissue using a 1,000 µL pipette tip. Set the pipetter volume to about 800 µL. Aspirate the pieces and eject
forcefully onto the side of the tube, directly above the fluid line. However, try to minimize bubbles or foaming. Repeat until the tissue
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is sufficiently dissociated, about 15 - 20x. Add 8 mL culture medium to inactivate the trypsin. Gently mix by inverting the tube several
times.

5. Pass the cell suspension through a 70 µm cell strainer placed on top of a 50 mL centrifuge tube. Rinse the 15 mL tube with culture
medium and filter the medium through the cell strainer to collect the medium in the 50 mL tube with the cell suspension. Rinse the cell
strainer a few times with culture medium. After rinsing, the final volume should be about 20 - 25 mL.

6. Pellet the cells at 200 x g for 10 min. Carefully aspirate as much medium as possible, without touching the cell pellet. Resuspend the
cells in 1 mL culture medium using a 1000 µL pipette. Add 11 mL prewarmed culture medium and mix gently (to prevent bubbles) using
a 10 mL pipette.

7. Rinse the PDL-coated T75 flask once with 5 mL culture medium. Aspirate the medium and transfer the cell suspension to the flask. All
cells are in the suspension are plated, and we find it generally unnecessary to count them, since astrocytes cannot be differentiated
from other cells in the suspension. Place the flask into a humidified 37 °C incubator with an atmosphere of 5% CO2 for two days.

4. Expansion and maintenance of the astrocytes
1. Replace the entire medium for the first time 2 d after initial plating. Replace the entire medium afterwards every 3 d. Always prewarm

the fresh medium to 37 °C before adding to the cells.
 

NOTE: The astrocytes require 7 - 10 d to reach approximately 90% confluency (the astrocytes appear as a densely packed tessellated
monolayer, with microglia and oligodendrocytes lying on top and intermixed).

2. When the astrocytes reach approximately 90% confluency, shake the flask to remove the contaminating glial cells:
1. Remove the flask from the incubator and tighten the cap (phenolic) or cover the port (filtered). To remove microglia, shake the

flask on an orbital platform at 180 rpm for 1 h. Aspirate the medium. Rinse once with 5 mL pre-warmed culture medium, aspirate
and replace with 12 mL culture medium.

2. To remove the oligodendrocytes, return the flask to the orbital platform and shake at 250 rpm, 37 °C for a minimum of 7 h, but
preferably O/N.

3. Aspirate the medium. Rinse once with 5 mL pre-warmed culture medium, aspirate and replace with 12 mL culture medium.
Return the flask to the incubator.

4. When 100% confluent, split the astrocytes using standard procedures at a ratio of 1:3 to 1:2 with 0.05% trypsin-
ethylenediaminetetraacetic acid (EDTA). A T75 flask at 100% confluency will typically yield about 4.0 x 106 cells in total. Under
this schedule, the cultures can typically be split once per week.
 

NOTE: When the astrocytes reach confluency, they can be harvested and used for hiPSC differentiation as described below in
protocol step 3.4. The astrocytes can be split at least once without a noticeable loss of viability. They can be maintained for up
to 2 months in culture. From experience, primary embryonic day 18 rat astrocytes progressively become terminally differentiated
and/or lose viability after repeated splitting. Although it is possible to freeze the astrocytes for future use, we prefer to isolate the
astrocytes from fresh embryonic brains when required.

2. Generation of rtTA/Ngn2-positive hiPSCs

NOTE: The hiPSCs used for our experiments were generated in-house by lentiviral transduction of human fibroblasts with the reprogramming
factors cMYC, SOX2, OCT4 and KLF4.

NOTE: For the generation of rtTA/Ngn2-positive hiPSCs, lentiviral vectors are used to stably integrate the transgenes into the genome of the
hiPSCs. The protocol for the production of the lentivirus has been published previously22. The details of the lentiviral packaging vectors that are
used to produce the rtTA and Ngn2 lentivirus particles are provided in the Table of Materials/Equipment. The transfer vector used for the rtTA
lentivirus is pLVX-EF1α-(Tet-On-Advanced)-IRES-G418(R); i.e. this vector encodes a Tet-On Advanced transactivator under control of a constitutive
EF1α promoter and confers resistance to the antibiotic G418. The transfer vector used for the Ngn2 lentivirus is pLVX-(TRE-thight)-(MOUSE)Ngn2-
PGK-Puromycin(R); i.e. this vector encodes the gene for murine neurogenin-2 under control of a Tet-controlled promoter and the puromycin
resistance gene under control of a constitutive PGK promoter. Hence, by using these two transfer vectors, an hiPSC line can be created for which
the expression of murine neurogenin-2 can be induced by supplementing the medium with doxycycline. For the transduction of the hiPSCs, the
supernatant with the lentivirus particles is used (referred to as 'lentivirus suspension' in the remainder of the text), i.e. without concentrating the
particles using ultracentrifugation.

1. Plate the hiPSCs (day 1)
 

NOTE: The volumes that are mentioned in this protocol assume that the hiPSCs are cultured in a 6 well plate and that the cells of one well
are harvested. In addition, it is assumed that the cells are plated subsequently in 12 wells of a 12 well plate.

1. Prepare 10 mL cold DMEM/F12 with 1% (v/v) Basement Membrane Matrix (BMM) to obtain diluted BMM. Add 800 µL diluted BMM per
well of a 12 well plate. Incubate for at least 1 h in a humidified 37 °C incubator with an atmosphere of 5% CO2. Before usage, incubate
the plate for 1 h at RT.

2. Warm 15 mL Essential 8 (E8) medium with 1% (v/v) penicillin/streptomycin, 9 mL DMEM/F12 and 1 mL cell detachment solution (CDS)
to room temperature. Supplement the E8 medium with Rho-associated protein kinase (ROCK) inhibitor.

3. Aspirate the spent medium of the hiPSCs and add 1 mL CDS to the hiPSCs. Incubate 3 - 5 min in a humidified 37 °C incubator with an
atmosphere of 5% CO2. Check under the microscope whether the cells are detaching from one another.

4. Add 2 mL DMEM/F12 in the well, gently suspend the cells with a 1,000 µL pipette and transfer the cells to a 15 mL tube. Add 7 mL
DMEM/F12 to the cell suspension. Spin the cells at 200 x g for 5 min.

5. Aspirate the supernatant and add 2 mL of the prepared E8 medium. Obtain a cell suspension in which the hiPSCs are dissociated
(do not form cell clumps) by putting the tip of a 1,000 µL pipette against the side of the 15 mL tube and resuspending the cells gently.
Check under the microscope whether the cells are dissociated.

6. Determine the number of cells (cells/mL) using a hemocytometer chamber.
 

NOTE: A 6 well plate well at 80 - 90% confluency will typically yield 3.0 - 4.0 x 106 cells in total.
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7. Aspirate the diluted BMM from the wells of the 12 well plate. Dilute the cells to obtain a cell suspension of 3.0 x 104 cells/mL. Plate 1
mL of the cell suspension per well of the 12 well plate. Place the 12 well plate O/N in a humidified 37 °C incubator with an atmosphere
of 5% CO2.

2. Transduce the iPS cells with rtTA  and Ngn2 lentivirus (day 2)
1. Warm 12 mL E8 medium with 1% (v/v) penicillin/streptomycin to room temperature. Supplement the E8 medium with ROCK inhibitor

and polybrene to a final concentration of 8 µg/mL to the E8 medium.
2. Thaw the aliquots with lentivirus suspension. Add polybrene to a final concentration of 8 µg/mL to the lentivirus suspension. Aspirate

the spent medium and add 1 mL of the prepared E8 medium to each well.
3. Perform the transduction with different amounts of the rtTA- and Ngn2-lentivirus suspensions. For example, transduce the hiPSCs by

adding 100 µL of both the rtTA-lentivirus and Ngn2-lentivirus suspension to one well of the 12 well plate. For the other wells, use 200
µL, 300 µL, 400 µL and 500 µL lentivirus suspension instead of 100 µL. The hiPSCs of two wells of the 12 well plate should not be
transduced; they will serve as controls during the selection.
 

NOTE: The transductions are preferably performed in duplicate, so that the transduction efficiency can be estimated more accurately
after the start of the selection (see protocol step 2.2.4). The amount of lentivirus suspension that is required to efficiently transduce the
majority of the hiPSCs depends on the titer of the lentivirus suspension and the hiPSC line that is used. In this study, we usually use
100 - 500 µL of lentivirus suspension to transduce the hiPSCs.

4. Place the 12 well plate in a humidified 37 °C incubator with an atmosphere of 5% CO2 for 6 h. Before the end of the 6 h incubation
period, warm 12 mL E8 medium with 1% (v/v) penicillin/streptomycin and 12 mL Dulbecco's Phosphate-buffered Saline (DPBS) to RT.
Supplement the E8 medium with ROCK inhibitor.

5. Aspirate the spent E8 medium. Wash each well with 1 mL DPBS. Add 1 mL of the prepared E8 medium to each well. Place the 12 well
plate O/N in a humidified 37 °C incubator with an atmosphere of 5% CO2.

3. Refresh the E8 medium (day 3)
1. Warm 12 mL E8 medium with 1% (v/v) penicillin/streptomycin to RT. Aspirate the spent medium from the wells of the 12 well plate and

add 1 mL of the prepared E8 medium to each well. Place the 12 well plate O/N in a humidified 37 °C incubator with an atmosphere of
5% CO2.

4. Perform selection with puromycin and G418 (day 4 - 8)
 

NOTE: Depending on the cell division rate of the hiPSC line and the efficiency of the lentiviral transduction, the cells may reach 70 - 80%
confluency during the selection period, at which point the cultures need to be split. Because the timing of the splitting cannot be predicted
in advance, it will not be mentioned in the protocol. However, instead of refreshing the E8 medium supplemented with the mentioned
concentrations of puromycin and G418, one can split the hiPSC culture as a normal hiPSC culture (including plating the cells on vitronectin-
coated plates). The only exception is that the E8 medium should be supplemented with the mentioned concentrations of the antibiotics to
continue the selection.

1. Warm 12 mL E8 medium with 1% (v/v) penicillin/streptomycin to room temperature. Add puromycin and G418 for selection; different
amounts of the antibiotics are added during the selection period (Table 1).

2. Estimate the efficiency of the transduction by estimating the percentage of G418- and puromycin-resistant cells. To estimate the
percentage of resistant cells, estimate the percentage of dead cells (nonresistant cells) for the different conditions (the cultures
transduced with the different amounts of lentivirus suspension) and for the nontransduced cells (the cells that serve as a selection
control). Calculate the percentage of resistant cells as [100% - (percentage of dead cells)].
 

NOTE: If the transductions with the different amounts of lentivirus suspension were performed in duplicate, the transduction efficiency
can be estimated more accurately. The condition with the non-transduced cells serves as a selection control; the percentages of dead
cells for the cultures transduced with the different amounts of lentivirus suspension should be lower. The estimated percentage of
resistant cells is used to choose the hiPSCs that are likely positive for both transgenes. In general, we choose the hiPSCs from the
transduction condition were >90% of the cells survive the 5 d selection period.

3. Aspirate the spent medium of the hiPSCs and add 1 mL of the prepared E8 medium to the wells. Place the 12 well plate O/N in a
humidified 37 °C incubator with an atmosphere of 5% CO2.

Final concentration of G418 Final concentration of puromycin

Day 4 250 µg/mL 2 µg/mL

Day 5 250 µg/mL 2 µg/mL

Day 6 250 µg/mL 1 µg/mL

Day 7 250 µg/mL 1 µg/mL

Day 8 250 µg/mL 1 µg/mL

Table 1: Concentrations of Antibiotics during the Selection Period. Concentrations of the puromycin and G418 during the 5 d of the selection
period.

5. Stop the selection and start regular culturing (day 9 and later)
1. After the 5 d selection period, culture the rtTA/Ngn2-positive hiPSCs as normal hiPSCs, with the exception that the E8 medium of the

cells is supplemented with G418 to a final concentration of 50 µg/mL and with puromycin to a final concentration of 0.5 µg/mL.
 

NOTE: The cells can now be frozen (according to standard protocols for cryopreservation of cells) to serve as a backup. This is an
important step for the reproducibility of the differentiation protocol, because it allows the use of the same batch of rtTA/Ngn2-positive
hiPSCs for many future differentiation experiments.
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3. Differentiation of rtTA/Ngn2-positive hiPSCs to Neurons on 6-well MEAs and Glass
Coverslips

NOTE: In this protocol, the details are provided for differentiating rtTA/Ngn2-positive hiPSCs on two different substrates, i.e. 6-well MEAs (devices
composed of 6 independent wells with 9 recording and 1 reference embedded microelectrodes per well) and glass coverslips in the wells of a
24-well plate. The protocols, however, can easily be adapted for larger substrates (e.g., for the wells of 12- or 6-well plates), by scaling up the
mentioned values according to the surface area.

1. Prepare the MEAs or glass coverslips (day 0 and day 1)
1. The day before the start of the differentiation, sterilize the MEAs according to the manufacturer’s recommendation.
2. Dilute the adhesion protein Poly-L-Ornithine (PLO) in sterile ultrapure water to a final concentration 50 µg/mL. Coat the active electrode

area of 6-well MEAs by placing a 100 µL drop of the diluted PLO in each well. Place the coverslips in the wells of the 24-well plate
using sterile tweezers. Add 800 µL of the diluted PLO in each well. Prevent the coverslips from floating by pushing them down with the
1000 µL pipette tip.

3. Incubate the 6-well MEAs and 24-well plate O/N in a humidified 37 °C incubator with an atmosphere of 5% CO2. The next day, aspirate
the diluted PLO. Wash the glass surfaces of the 6-well MEAs and the coverslips twice with sterile ultrapure water.

4. Dilute laminin in cold DMEM/F12 to a final concentration of 20 µg/mL (for the 6-well MEAs) and 10 µg/mL (for the glass coverslips).
Immediately coat the active electrode area of the 6-well MEAs by placing a 100 µL drop in each well. Similarly, add 400 µL of the
diluted laminin in each well of the 24-well plate to coat the coverslips. Prevent the coverslips from floating by pushing them down with
the 1,000 µL pipette tip.

5. Incubate the 6-well MEAs and 24 well plate in a humidified 37 °C incubator with an atmosphere of 5% CO2 for at least 2 h.

2. Plate the hiPSCs (day 1)
 

NOTE: The volumes that are mentioned in steps 3.2.1 - 3.2.4 assume that the rtTA/Ngn2-positive hiPSCs are cultured in a 6-well plate and
that the cells of one well are harvested. The volumes that are required for plating the cells on the 6-well MEAs and/or the coverslips depends
on the number of 6-well MEAs and/or the number of coverslips that are used in the experiment; the numbers specified in steps 3.2.6 - 3.2.8
allow scaling to different experiment sizes.

1. Warm DMEM/F12, CDS and E8 medium with 1% (v/v) penicillin/streptomycin to R/T. Add doxycycline to a final concentration of 4 µg/
mL and ROCK inhibitor to the E8 medium.

2. Aspirate the spent medium of the rtTA/Ngn2-positive hiPSCs and add 1 mL CDS to the hiPSCs. Incubate 3 - 5 min in a humidified 37
°C incubator with an atmosphere of 5% CO2. Check under the microscope whether the cells are detaching from one another.

3. Add 2 mL DMEM/F12 in the well, gently suspend the cells with a 1,000 µL pipette and transfer the cells to a 15 mL tube. Add 7 mL
DMEM/F12 to the cell suspension. Spin the cells at 200 x g for 5 min.

4. Aspirate the supernatant and add 2 mL of the prepared E8 medium. Dissociate the hiPSCs by putting the tip of a 1,000 µL pipette
against the side of the 15 mL tube and resuspending the cells gently. Check under the microscope whether the cells are dissociated.

5. Determine the number of cells (cells/mL) using a hemocytometer chamber.
 

NOTE: A 6-well plate well at 80 - 90% confluency will typically yield 3.0 - 4.0 x 106 cells in total.
6. Aspirate the diluted laminin. For the 6-well MEAs, dilute the cells to obtain a cell suspension of 7.5 x 105 cells/mL. Plate the cells by

adding a drop of 100 µL of the cell suspension on the active electrode area in each well of the 6-well MEAs. For the coverslips, dilute
the cells to obtain a cell suspension of 4.0 x 104 cells/mL. Plate the cells by adding 500 µL of the cell suspension to the wells of the 24-
well plate.
 

NOTE: The final cell density on the MEAs is higher than on the coverslips (Figure 1A and B). We found that this high cell density was
required for proper recording of the network activity. In the protocol, the numbers are provided that turned out to be optimal for the
assays.

7. Place the 6-well MEAs and 24 well plate in a humidified 37 °C incubator with an atmosphere of 5% CO2 for 2 h (MEAs) or O/N (24 well
plate).

8. After 2 h, carefully add 500 µL of the prepared E8 medium to each well of the 6-well MEAs. Place the 6-well MEAs O/N in a humidified
37 °C incubator with an atmosphere of 5% CO2.

3. Change the medium (day 2)
1. The next day, prepare DMEM/F12 with 1% (v/v) N-2 supplement, 1% (v/v) non-essential amino acids and 1% (v/v) penicillin/

streptomycin. Add human recombinant neurotrophin-3 (NT-3) to a final concentration of 10 ng/mL, human recombinant brain-derived
neurotrophic factor (BDNF) to a final concentration of 10 ng/mL, and doxycycline to a final concentration of 4 µg/mL. Warm the medium
to 37 °C.

2. Add laminin to a final concentration of 0.2 µg/mL to the medium. Filter the resulting medium. Aspirate the spent medium from the wells
of the 6-well MEAs and the 24-well plate and replace it with the prepared medium. Incubate the 6-well MEAs and 24-well plate O/N in a
humidified 37 °C incubator with an atmosphere of 5% CO2.

4. Add rat astrocytes (day 3)
 

NOTE: The volumes that are mentioned in this protocol assume that the rat astrocytes are cultured in T75 culture flasks. It is critical that the
rat astrocytes that are added to the cultures are of good quality. We use two criteria to check if the rat astrocytes are of good quality. First, the
rat astrocyte culture should be able to grow confluent within ten days after the isolation from the rat embryonic brains. Second, after splitting
the rat astrocyte culture, the rat astrocytes should be able to form a confluent, tessellated monolayer (Figure 1C). If the rat astrocyte culture
does not fulfill these two criteria, we advise not to use this culture for differentiation experiments.

1. Warm 0.05% trypsin-EDTA to RT. Warm the DPBS and DMEM/F12 with 1% (v/v) penicillin/streptomycin to 37 °C.
2. Aspirate the spent medium of the rat astrocyte culture. Wash the culture by adding 5 mL DPBS and swish it around gently.
3. Aspirate the DPBS and add 5 mL 0.05% trypsin-EDTA. Swish the trypsin-EDTA around gently. Incubate in a humidified 37 °C incubator

with an atmosphere of 5% CO2 for 5 - 10 min.
4. Check under the microscope whether the cells are detached. Detach the last cells by hitting the flask a few times.
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5. Add 5 mL of DMEM/F12 to the flask. Triturate the cells gently inside the flask with a 10 mL pipette. Collect the cell suspension in a 15
mL tube. Spin the tube at 200 x g for 8 min.

6. Aspirate the supernatant and resuspend the cells in 1 mL of DMEM/F12. Determine the number of cells (cells/mL) using a
hemocytometer chamber.

7. Add 7.5 x 104 astrocytes per well of the 6-well MEAs. Add 2.0 x 104 astrocytes per well of the 24-well plate. Incubate the MEAs and the
24-well plate O/N in a humidified 37 °C incubator with an atmosphere of 5% CO2.

5. Change the medium (day 4)
1. Prepare neurobasal medium with 2% (v/v) B-27 supplement, 1% (v/v) L-alanyl-L-glutamine and 1% (v/v) penicillin/streptomycin. Add

NT-3 to a final concentration of 10 ng/mL, BDNF to a final concentration of 10 ng/mL, and doxycycline to a final concentration of 4 µg/
mL. In addition, add cytosine β-D-arabinofuranoside to a concentration of 2 µM.
 

NOTE: Cytosine β-D-arabinofuranoside is added to the medium to inhibit astrocyte proliferation and to kill the remaining hiPSCs that
are not differentiating into neurons.

2. Filter the medium and warm to 37 °C. Aspirate the spent medium from the wells of the 6-well MEAs and the 24-well plate and replace
it with the prepared medium. Maintain the 6-well MEAs and the 24-well plate in a humidified 37 °C incubator with an atmosphere of 5%
CO2.

6. Refresh the medium (day 6 - 28)
 

NOTE: Starting from day 6, refresh half of the medium every two days. From day 10 onwards, the medium is supplemented with FBS to
support the astrocyte viability.

1. Prepare neurobasal medium with 2% (v/v) B-27 supplement, 1% (v/v) L-alanyl-L-glutamine and 1% (v/v) penicillin/streptomycin. Add
NT-3 to a final concentration of 10 ng/mL, BDNF to a final concentration of 10 ng/mL, and doxycycline to a final concentration of 4 µg/
mL. From day 10 onwards, also supplement the medium with 2.5% (v/v) FBS. Filter the resulting medium and warm to 37 °C.

2. Remove half of the spent medium from the wells of the 6-well MEAs and the 24-well plate using a 1000 µL pipette and replace it with
the prepared medium. Maintain the 6-well MEAs and the 24-well plate in a humidified 37 °C incubator with an atmosphere of 5% CO2.

4. Establish the Neurophysiological Profile of hiPSC-derived Neurons

NOTE: Two to three weeks after the induction of differentiation, the hiPSC-derived neurons can be used for different downstream analyses. In this
section, examples of some downstream analyses are given that can be performed to establish the neurophysiological profile of the hiPSC-derived
neurons.

1. Characterize the neuronal network activity using MEAs
1. Record 20 min of electrophysiological activity of hiPSC-derived neurons cultured on MEAs. During the recording, maintain the

temperature at 37 °C, and prevent evaporation and pH changes of the medium by inflating a constant, slow flow of humidified gas (5%
CO2, 20% O2, 75% N2) onto the MEA.

2. After 1200X amplification (MEA 1060, MCS), sample the signal at 10 kHz using the MCS data acquisition card. Analyze the data (spike
and burst detection) using a custom software package23.

2. Characterize the single-cell electrophysiological activity
1. Transfer the cover slips containing the hiPSC-derived neuronal cultures to a submerged fixed-stage recording chamber in an upright

microscope. Record 20 min of spontaneous action potential-evoked postsynaptic currents (sEPSC) 24. Detect the synaptic event using
neuroscientific program.

3. Characterize the neuronal morphology and synapsin expression
1. Fix and stain the hiPSC-derived neurons for MAP2, synapsin-1/2, and PSD-9522, 24, 25. Quantify the number of synapsin-1/2 and

PSD-95 puncta using image analysis software.

Representative Results

Here we have successfully modified a protocol in which hiPSCs are differentiated directly into cortical neurons by over-expressing the
transcription factor neurogenin-212 and we have adapted it for the use of MEAs. This approach is fast and efficient allowing us to obtain
functional neurons and network activity already during the third week after the induction of differentiation.

During the course of the differentiation protocol, the cells morphologically started to resemble neurons: small processes were formed and
neurons started connecting to each other (Figure 1A). We established a neurophysiological profile of the neurons derived from a healthy-control
hiPSC line, by measuring their neuronal morphology and synaptic properties during development. hiPSC-derived neurons were stained for MAP2
and synapsin-1/2 at different days after the start of differentiation (Figure 2A). The derived neurons show mature neuronal morphology already
3 weeks after the induction of differentiation. The number of synapsin-1/2 puncta (a measure for the number of synapses) was quantified based
on synapsin-1/2 immunocytochemistry stainings. The number of synapsin-1/2 puncta increased over time, suggesting that the level of neuronal
connectivity is also increasing (Figure 2B). The number of synapsin-1/2 puncta 23 days after the induction of differentiation was similar in two
independent IPS lines (Figure 2C). At 23 DIV most synapsin1/2 puncta were juxtaposed to PSD-95 puncta, which is indicative for functional
synapses (Figure 2D).

Consistent with the results described by Zhang et al., we generated a population of excitatory upper layer cortical neurons, confirmed by pan-
neuronal and subtype-specific cortical markers such as BRN2 and SATB2(layer II/III). We did not observe neurons that were positive for deep
layer neurons CTIP2 (layer V) or Foxp2 (layer VI) (Figure 2E and F)
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To characterize the electrophysiological activity of the hiPSC-derived neurons, we used whole-cell current and voltage clamp recordings,
i.e. intrinsic properties and excitatory input onto these neurons were measured during development. The neurons were able to generate
action potentials already one week after the of differentiation and the percentage of spiking cells was increasing over time (Figure 2G and H).
Furthermore, the neurons received excitatory synaptic input already a week after the induction of differentiation: both frequency and amplitude of
the excitatory synaptic input increased during development (Figure 2I - K).

To better understand how single-cell activity combines to form network-level functions, it is essential to study how neurons work in concert. In
vitro neuronal networks cultured on MEAs constitute a valuable experimental model for studying the neuronal dynamics. We recorded 20 min
of electrophysiological network activity of neurons derived from a healthy-control hiPSC line cultured on 6-well MEAs (Figure 2M). Few weeks
after the induction of differentiation, the neurons derived from healthy-control hiPSCs formed functionally active neuronal networks, showing
spontaneous events (0.62 ± 0.05 spike/s; Figure 2N). At this stage of development (i.e. 16 d after the start of the differentiation) no synchronous
events involving all the channels of the MEAs are detected (Figure 2O). The level of network activity increased during the development: during
the fourth week after the induction of differentiation, the neuronal networks showed high level of spontaneous activity (2.5 ± 0.1 spike/s; Figure
2N) in all the wells of the device. The networks also exhibited synchronous network bursts (4.1 ± 0.1 burst/min, Figure 2O) with long duration
(2,100 ± 500 ms).

 

Figure 1: hiPSC Differentiation into Neurons. A. Three time points of hiPSCs differentiation into neurons on coverslips. B. Plating of hiPSCs
on MEAs. C. Astrocytes at 100% confluency in T75 flask (note that the cells form a tessellated monolayer). Scale bars: 150 µm. Please click
here to view a larger version of this figure.
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Figure 2. hiPSC-derived Neurons Characterization. A. hiPSC-derived neurons were stained for MAP2 (green) and synapsin-1/2 (red) at
different days after the start of differentiation. Scale bar: 10 µm. B. Quantification of synapsin puncta in two independent experiments. In each
experiments at least 10 cells were analyzed. C. Quantification of synapsin puncta at DIV23 in neurons derived from two independent IPS lines.
D. hiPSC-derived neurons were stained for PSD-95 (green) and synapsin-1/2 (red) 23 days after the start of differentiation. Synapsin puncta
are juxtaposed to PSD-95 puncta. E. hiPSC-derived neurons were stained for MAP2 (green) and BRN2 (red) or SATB2 (red) 23 d after the start
of differentiation. F. Percentage of MAP2 positive cells that were positive for indicated markers. G. Representative current clamp recordings
showing that action potentials can be generated as early as 7 d after the start of differentiation. H. Percentage of cells at different days after
the induction of differentiation that show one or more action potentials. I. Representative traces of excitatory postsynaptic currents (EPSCs)
received by hiPSC-derived neurons at different days after differentiation. J. Frequency of excitatory postsynaptic currents during development. K.
Amplitude of excitatory postsynaptic currents during development. L. Representative traces of EPSC recordings without (control) and with CNQX
(CNQX). M. Neurons derived from one hiPSC line were cultured on a 6-well MEA and network activity is shown for hiPSC-derived neuronal
networks 16 and 23 d after the induction of differentiation. The activity recorded from each well (sampling rate of 10 kHz) is indicated with a
different color (5 min of the 20 min of recording are shown). N. Firing rate 16 and 23 d after the induction of differentiation. O. Bursting rate 16
and 23 d after the induction of differentiation. Please click here to view a larger version of this figure.

Given the results, the quality of the resulting hiPSC-derived neurons can be assessed by making a neurophysiological profile of the cells. That
is, three to four weeks after the start of the differentiation, the morphology, synapsin-1/2 expression and electrophysiology of the neurons can
be assessed. At that time point, the hiPSC-derived neurons are expected to show a neuronal-like morphology, to be MAP2, synapsin/PSD-95
positive when performing immunocytochemistry, and to exhibit spontaneous electrophysiological activity (both at the single-cell and network
level).

Discussion

Here we have implemented an efficient hiPSC-differentiation protocol published by Zhang et al. (2013)12 for measuring the network activity of
hiPSC-derived neuronal networks on MEAs. We adapted the original protocol by creating an rtTA/Ngn2-positive hiPSC line before inducing
neuronal differentiation. This additional step allows us to control the neuronal cell density on the MEA. Control over the neuronal density was
an important pre-requisite for adapting the protocol to MEAs and for ensuring consistency. To measure the activity of neuronal networks using
MEAs, the neurons need to form dense networks directly on top of the MEA electrodes17,18. This necessarily requires tight control over the
plating density of the neurons. The rtTA/Ngn2-positive hiPSC line allows for control of neuron density because this tactic does not rely on acute
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lentiviral transductions of hiPSCs prior to differentiation; the rtTA/Ngn2-positive hiPSC line therefore nearly eliminates any variation in the final
yield due to, for example, lentiviral toxicity and variable infection efficiency.

Another critical step of the experimental procedure is the number of the rat astrocytes that are cocultured with the differentiating hiPSCs.
Astrocytes actively contribute to the refinement of developing neural circuits by controlling synapse formation, maintenance, and elimination, all
of which are important processes for neuronal functioning. The protocol presented in this paper is highly astrocyte-dependent: to fully mature
and form functional synapses, the neurons require support from the astrocytes. We experienced that the number of astrocytes should be roughly
equal to the number of hiPSC-derived neurons to support the maturation of the neurons and the formation of neuronal networks exhibiting
spontaneous activity. Since our astrocyte protocol yields primary cell cultures with a limited life span, the isolation of rat astrocytes has to be
performed regularly.

Our adaptation of the protocol published by Zhang et al. (2013)12 for use with MEA technology will likely significantly improve our ability to study
the network activity of hiPSC-derived networks. Previously, protocols used for studying hiPSC-derived neuronal networks with MEAs relied on
time-consuming differentiation procedures13-16. The protocol from Zhang et al. (2013) provides a rapid alternative, and our modification removes
a source of variability, which makes it now more feasible to use hiPSC-derived neurons in combination with MEA technology, especially in high-
throughput or pharmacological studies. In addition, because the method published by Zhang et al. (2013)12 yields a homogeneous population of
upper-layer cortical neurons, our adapted protocol makes possible focused studies into the network activity of this particular neuronal subset.

Nonetheless, this approach has also several limitations. First, the homogeneity of the cultures can also be considered a disadvantage, because
the cultures are less likely to resemble in vivo networks, where different classes of neurons (i.e. inhibitory and excitatory neurons) constitute a
heterogeneous network. To further enhance the use of the hiPSC-derived neurons with MEA technology, it will be important to develop rapid
(transgene-based) differentiation protocols for other neuronal cell populations. If protocols become available, the in vitro networks would mimic
in vivo networks more closely. Second, at present rat astrocytes must be added to the hiPSC-derived neurons for growth support, and therefore
the resulting neuronal network is not a human neuronal network sensu stricto. Reliable protocols for differentiating hiPSCs into astrocytes may
in the future solve this problem26. Third, two-dimensional neuronal networks, as described here, are a limited model for studying complex three-
dimensional in vivo neuronal networks. Fortunately, protocols describing three-dimensional cultures of rat primary neurons in combination with
MEA technology are already available27,28. Prospectively, the combination of rapid differentiation protocols for obtaining hiPSC-derived neurons
and astrocytes with three-dimensional culture techniques and MEA technology should provide novel insight into the biological mechanisms
underlying neurological disorders.
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