195 research outputs found

    Collagens - structure, function and biosynthesis.

    Get PDF
    The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the distribution and function of various collagen types in different tissues. It introduces their basic structural subunits and points out major steps in the biosynthesis and supramolecular processing of fibrillar collagens as prototypical members of this protein family. A final outlook indicates the importance of different collagen types not only for the understanding of collagen-related diseases, but also as a basis for the therapeutical use of members of this protein family discussed in other chapters of this issue

    Chondrogenic differentiation of growth factor-stimulated precursor cells in cartilage repair tissue is associated with increased HIF-1α activity

    Get PDF
    SummaryObjectiveTo investigate the chondrogenic potential of growth factor-stimulated periosteal cells with respect to the activity of Hypoxia-inducible Factor 1α (HIF-1α).MethodsScaffold-bound autologous periosteal cells, which had been activated by Insulin-like Growth Factor 1 (IGF-1) or Bone Morphogenetic Protein 2 (BMP-2) gene transfer using both adeno-associated virus (AAV) and adenoviral (Ad) vectors, were applied to chondral lesions in the knee joints of miniature pigs. Six weeks after transplantation, the repair tissues were investigated for collagen type I and type II content as well as for HIF-1α expression. The functional role of phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling on BMP-2/IGF-1-induced HIF-1α expression was assessed in vitro by employing specific inhibitors.ResultsUnstimulated periosteal cells formed a fibrous extracellular matrix in the superficial zone and a fibrocartilaginous matrix in deep zones of the repair tissue. This zonal difference was reflected by the absence of HIF-1α staining in superficial areas, but moderate HIF-1α expression in deep zones. In contrast, Ad/AAVBMP-2-stimulated periosteal cells, and to a lesser degree Ad/AAVIGF-1-infected cells, adopted a chondrocyte-like phenotype with strong intracellular HIF-1α staining throughout all zones of the repair tissue and formed a hyaline-like matrix. In vitro, BMP-2 and IGF-1 supplementation increased HIF-1α protein levels in periosteal cells, which was based on posttranscriptional mechanisms rather than de novo mRNA synthesis, involving predominantly the MEK/ERK pathway.ConclusionThis pilot experimental study on a relatively small number of animals indicated that chondrogenesis by precursor cells is facilitated in deeper hypoxic zones of cartilage repair tissue and is stimulated by growth factors which enhance HIF-1α activity

    Molecular differentiation between osteophytic and articular cartilage – clues for a transient and permanent chondrocyte phenotype

    Get PDF
    SummaryObjectiveTo identify the molecular differences between the transient and permanent chondrocyte phenotype in osteophytic and articular cartilage.MethodsTotal RNA was isolated from the cartilaginous layer of osteophytes and from intact articular cartilage from knee joints of 15 adult human donors and subjected to cDNA microarray analysis. The differential expression of relevant genes between these two cartilaginous tissues was additionally validated by quantitative reverse transcriptase polymerase chain reaction (RT-PCR) and by immunohistochemistry.ResultsAmong 47,000 screened transcripts, 600 transcripts were differentially expressed between osteophytic and articular chondrocytes. Osteophytic chondrocytes were characterized by increased expression of genes involved in the endochondral ossification process [bone gamma-carboxyglutamate protein/osteocalcin (BGLAP), bone morphogenetic protein-8B (BMP8B), collagen type I, alpha 2 (COL1A2), sclerostin (SOST), growth arrest and DNA damage-induced gene 45ß (GADD45ß), runt-related transcription factor 2 (RUNX2)], and genes encoding tissue remodeling enzymes [matrix metallopeptidase (MMP)9, 13, hyaluronan synthase 1 (HAS1)]. Articular chondrocytes expressed increased transcript levels of antagonists and inhibitors of the BMP- and Wnt-signaling pathways [Gremlin-1 (GREM1), frizzled-related protein (FRZB), WNT1 inducible signaling pathway protein-3 (WISP3)], as well as factors that inhibit terminal chondrocyte differentiation and endochondral bone formation [parathyroid hormone-like hormone (PTHLH), sex-determining region Y-box 9 (SOX9), stanniocalcin-2 (STC2), S100 calcium binding protein A1 (S100A1), S100 calcium binding protein B (S100B)].Immunohistochemistry of tissue sections for GREM1 and BGLAP, the two most prominent differentially expressed genes, confirmed selective detection of GREM1 in articular chondrocytes and that of BGLAP in osteophytic chondrocytes and bone.ConclusionsOsteophytic and articular chondrocytes significantly differ in their gene expression pattern. In articular cartilage, a prominent expression of antagonists inhibiting the BMP- and Wnt-pathway may serve to lock and stabilize the permanent chondrocyte phenotype and thus prevent their terminal differentiation. In contrast, osteophytic chondrocytes express genes with roles in the endochondral ossification process, which may account for their transient phenotype

    Quantitative ultrasound biomicroscopy for the analysis of healthy and repair cartilage tissue

    Get PDF
    The increasing spectrum of different cartilage repair strategies requires the introduction of adequate non-destructive methods to analyse their outcome in-vivo, i.e. arthroscopically. The validity of non-destructive quantitative ultrasound biomicroscopy (UBM) was investigated in knee joints of five miniature pigs. After 12 weeks, six 5-mm defects, treated with different cartilage repair approaches, provided tissues with different structural qualities. Healthy articular cartilage from each contralateral unoperated knee joint served as a control. The reflected and backscattered ultrasound signals were processed to estimate the integrated reflection coefficient (IRC) and apparent integrated backscatter (AIB) parameters. The cartilage repair tissues were additionally assessed biomechanically by cyclic indentation, histomorphologically and immunohistochemically. UBM allowed high-resolution visualisation of the structure of the joint surface and subchondral bone plate, as well as determination of the cartilage thickness and demonstrated distinct differences between healthy cartilage and the different repair cartilage tissues with significant higher IRC values and a steeper negative slope of the depth-dependent backscatter amplitude AIBslope for healthy cartilage. Multimodal analyses revealed associations between IRC and the indentation stiffness. Furthermore, AIBslope and AIB at the cartilage-bone boundary (AIBdC) were associated with the quality of the repair matrices and the subchondral bone plate, respectively. This ex-vivo pilot study confirms that UBM can provide detailed imaging of articular cartilage and the subchondral bone interface also in repaired cartilage defects, and furthermore, contributes in certain aspects to a basal functional characterization of various forms of cartilage repair tissues. UBM could be further established to be applied arthroscopically in-vivo

    PU.1 controls fibroblast polarization and tissue fibrosis

    Get PDF
    Fibroblasts are polymorphic cells with pleiotropic roles in organ morphogenesis, tissue homeostasis and immune responses. In fibrotic diseases, fibroblasts synthesize abundant amounts of extracellular matrix, which induces scarring and organ failure. By contrast, a hallmark feature of fibroblasts in arthritis is degradation of the extracellular matrix because of the release of metalloproteinases and degrading enzymes, and subsequent tissue destruction. The mechanisms that drive these functionally opposing pro-fibrotic and pro-inflammatory phenotypes of fibroblasts remain unknown. Here we identify the transcription factor PU.1 as an essential regulator of the pro-fibrotic gene expression program. The interplay between transcriptional and post-transcriptional mechanisms that normally control the expression of PU.1 expression is perturbed in various fibrotic diseases, resulting in the upregulation of PU.1, induction of fibrosis-associated gene sets and a phenotypic switch in extracellular matrix-producing pro-fibrotic fibroblasts. By contrast, pharmacological and genetic inactivation of PU.1 disrupts the fibrotic network and enables reprogramming of fibrotic fibroblasts into resting fibroblasts, leading to regression of fibrosis in several organs

    The tyrosine phosphatase SHP2 controls TGFβ-induced STAT3 signaling to regulate fibroblast activation and fibrosis

    Get PDF
    Uncontrolled activation of TGFβ signaling is a common denominator of fibrotic tissue remodeling. Here we characterize the tyrosine phosphatase SHP2 as a molecular checkpoint for TGFβ-induced JAK2/STAT3 signaling and as a potential target for the treatment of fibrosis. TGFβ stimulates the phosphatase activity of SHP2, although this effect is in part counterbalanced by inhibitory effects on SHP2 expression. Stimulation with TGFβ promotes recruitment of SHP2 to JAK2 in fibroblasts with subsequent dephosphorylation of JAK2 at Y570 and activation of STAT3. The effects of SHP2 on STAT3 activation translate into major regulatory effects of SHP2 on fibroblast activation and tissue fibrosis. Genetic or pharmacologic inactivation of SHP2 promotes accumulation of JAK2 phosphorylated at Y570, reduces JAK2/STAT3 signaling, inhibits TGFβ-induced fibroblast activation and ameliorates dermal and pulmonary fibrosis. Given the availability of potent SHP2 inhibitors, SHP2 might thus be a potential target for the treatment of fibrosis

    A microarray analysis of full depth knee cartilage of ovariectomized rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This short communication focuses the on articular cartilage and the subchondral bone, both of which play important roles in the development of osteoarthritis (OA). There are indications that estrogen-deficiency, as the post-menopausal state, accelerate the development of OA.</p> <p>Findings</p> <p>We investigated, which extracellular matrix (ECM) protein, proteases and different pro-inflammatory factors was up- or down-regulated in the knee joint tissue in response to estrogen-deficiency in rats induced by ovariectomy. These data support previous findings that several metalloproteinases (MMPs) and cysteine proteases are co-regulated with numerous collagens and proteoglycans that are important for cartilage integrity. Furthermore quite a few pro-inflammatory cytokines were regulated by estrogen deprivation.</p> <p>Conclusion</p> <p>We found multiple genes where regulated in the joint by estrogen-deficiency, many of which correspond well with our current knowledge of the pathogenesis of OA. It supports that estrogen-deficiency (e.g. OVX) may accelerate joint deterioration. However, there are also data that draw attention the need for better understanding of the synergy between proteases and tissue turnover.</p

    Positional Cloning of Zinc Finger Domain Transcription Factor Zfp69, a Candidate Gene for Obesity-Associated Diabetes Contributed by Mouse Locus Nidd/SJL

    Get PDF
    Polygenic type 2 diabetes in mouse models is associated with obesity and results from a combination of adipogenic and diabetogenic alleles. Here we report the identification of a candidate gene for the diabetogenic effect of a QTL (Nidd/SJL, Nidd1) contributed by the SJL, NON, and NZB strains in outcross populations with New Zealand Obese (NZO) mice. A critical interval of distal chromosome 4 (2.1 Mbp) conferring the diabetic phenotype was identified by interval-specific congenic introgression of SJL into diabetes-resistant C57BL/6J, and subsequent reporter cross with NZO. Analysis of the 10 genes in the critical interval by sequencing, qRT–PCR, and RACE–PCR revealed a striking allelic variance of Zfp69 encoding zinc finger domain transcription factor 69. In NZO and C57BL/6J, a retrotransposon (IAPLTR1a) in intron 3 disrupted the gene by formation of a truncated mRNA that lacked the coding sequence for the KRAB (Krüppel-associated box) and Znf-C2H2 domains of Zfp69, whereas the diabetogenic SJL, NON, and NZB alleles generated a normal mRNA. When combined with the B6.V-Lepob background, the diabetogenic Zfp69SJL allele produced hyperglycaemia, reduced gonadal fat, and increased plasma and liver triglycerides. mRNA levels of the human orthologue of Zfp69, ZNF642, were significantly increased in adipose tissue from patients with type 2 diabetes. We conclude that Zfp69 is the most likely candidate for the diabetogenic effect of Nidd/SJL, and that retrotransposon IAPLTR1a contributes substantially to the genetic heterogeneity of mouse strains. Expression of the transcription factor in adipose tissue may play a role in the pathogenesis of type 2 diabetes
    corecore