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    Chapter 20   
 Role of PACAP and VIP Signalling 
in Regulation of Chondrogenesis 
and Osteogenesis                     

     Tamas     Juhasz     ,     Andrea     Tamas    ,     Roza     Zakany    , and     Dora     Reglodi   

    Abstract     Pituitary adenylate cyclase activating polypeptide (PACAP) and vasoac-
tive intestinal peptide (VIP) are multifunctional proteins that can regulate diverse 
physiological processes. These are also regarded as neurotrophic and anti- 
infl ammatory substances in the CNS, and PACAP is reported to prevent harmful 
effects of oxidative stress. In the last decade more and more data accumulated on 
the similar function of PACAP in various tissues, but its cartilage- and bone-related 
presence and functions have not been widely investigated yet. In this summary we 
plan to verify the presence and function of PACAP and VIP signalling tool kit dur-
ing cartilage differentiation and bone formation. We give evidence about the protec-
tive function of PACAP in cartilage regeneration with oxidative or mechanically 
stress and also with the modulation of PACAP signalling in vitro in osteogenic cells. 
Our observations imply the therapeutic perspective that PACAP might be applicable 
as a natural agent exerting protecting effect during joint infl ammation and/or may 
promote cartilage regeneration during degenerative diseases of articular cartilage.  
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  CREB    cAMP response element-binding protein   
  ECM    Extracellular matrix   
  HH    Hedgehog   
  IHH    Indian Hedgehog   
  MAPK    Mitogen-activated protein kinase   
  NFAT    Nuclear factor of activated T cells   
  PAC1    Pituitary adenylate cyclase-activating polypeptide type I receptor   
  PACAP    Pituitary adenylate cyclase polypeptide   
  PKA    Protein kinase A   
  PKC    Protein kinase C   
  PP2A    Protein phosphatase 2A   
  PP2B    Protein phosphatase 2B   
  PTHrP    Parathyroid hormone related peptide   
  Runx2    Runt-related transcription factor 2   
  SHH    Sonic Hedgehog   
  TGFβ    Transforming growth factor-β   
  VIP    Vasoactive intestinal polypeptide   
  VPAC    Vasoactive intestinal peptide receptor   

     Various signalling pathways infl uence the proper limb development and activating 
signals for many of them may arrive from the outer environment, partly via trans-
mission by the surrounding extracellular matrix (ECM). Regulatory molecules or 
physical stimuli are able to induce the activation of specifi c receptors which can 
determine the cell fate during the differentiation cycle. Chemical signals reaching 
the tissue or directly the cells may originate from blood or interstitial fl uid; in the 
latter case autocrine and paracrine signalling are the most frequent in developing 
organisms [ 1 ]. The best known mechanotransducer of developing cells is the pri-
mary cilium [ 2 ]. Changes of the intracellular ion concentration as the consequence 
of the activation of various ion channels can alter the resting membrane potential 
of cells and may infl uence proliferation and differentiation [ 3 ]. All of the pro-
cesses mentioned above have impact on the cellular differentiation program of 
skeletal elements. Hyaline cartilage especially articular cartilage is an avascular 
and aneural tissue with a uniquely organized extracellular matrix. The sequential 
receptor activation by paracrine or autocrine ways plays crucial role in the dif-
ferentiation of cartilage tissue, although many details of these mechanisms are 
still not well explored. The signifi cance of the better understanding of cartilage 
formation is underscored by the fact, that production of proper long bone archi-
tecture requires a cartilage template and involves time and growth factor depen-
dent activation of precisely defi ned regulating mechanisms and signalling cascade 
systems [ 4 ]. 
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    PACAP and VIP 

 VIP and PACAP are small hormone like peptides which belong to the VIP-secretin- 
growth hormone releasing hormone (GHRH)-glucagon superfamily. PACAP was 
fi rst extracted from ovine hypothalamus, and was thought to be an important neu-
rohormone regulating various processes in the CNS [ 5 ]. It is produced by a variety 
of cells and tissues in addition to neuronal cells. Among others, specifi c cells of the 
intestinal system can produce VIP along with some immune and endocrine cells. 
VIP has important functions in neuronal development and both in innate and 
acquired immunity [ 6 ]. 

 PACAP has two bioactive forms: a shorter, 27 amino acid (PACAP 27) and a 
longer 38 amino acid (PACAP 38) variant [ 7 ]. The N-terminal region of the 
polypeptide is evolutionary conserved and shows a high homology with that of 
VIP [ 5 ]. In the last decade, increasing amount of evidence has emerged regard-
ing the important roles of PACAP in peripheral organs such as uterus [ 8 ], ovary 
[ 9 ], and teeth [ 10 ]; moreover, its presence has been proven in human milk [ 11 ]. 
Nonetheless, only sporadic data exist about its function in skeletal elements 
[ 12 – 15 ]. 

 Three main G protein coupled receptors of these peptides have been identifi ed 
such as PAC1, VPAC1, and VPAC2 from which PACAP binding to PAC1 has the 
highest affi nity, while the latter two attract PACAP and VIP with equal affi nity 
[ 16 ]. Alteration in the conformation of these receptors results in the elevation of 
intracellular cAMP level leading to the activation of protein kinase A (PKA) [ 5 ]. 
The so- called “canonical” signalling activation may lead to the nuclear translo-
cation of CREB or Sox9 transcription factors and consequent activation of the 
expression of various genes. PAC1 receptor activation is also able to trigger the 
phosphorylation of key elements in MAPK pathways, such as ERK and p38 
kinases [ 5 ], subsequently regulating cellular division or apoptotic program 
induction [ 17 ]. The versatility of PACAP/VIP receptor induced signal transduc-
tion mechanisms indicates its multifactorial regulation, implying a vast array of 
signalling connections. Activation of IP 3  receptors inducing the release of Ca 2+  
from endoplasmic reticulum (ER) can be involved as the result of PACAP bind-
ing [ 18 ]. The elevation of intracellular Ca 2+  concentration activates various Ca 2+  
dependent signalling molecules such as classical PKCs, MAPK [ 19 ] or protein 
phosphatases like PP2B [ 20 ]. G-protein coupled receptors (GPCR) have been 
proven to have communication with other signalling cascades, implying that 
PACAP receptor activation may cross talk with WNT β-catenin [ 21 ], TGFβ [ 22 ], 
BMP [ 23 ], Hedgehog [ 24 ], and Notch signal transduction [ 25 ]. Multifactorial or 
pleiotropic effects of PACAP have been investigated in several biological processes 
and it has been proven to prevent apoptosis, ischemic conditions, infl ammation and 
oxidative stress [ 21 ,  26 – 29 ].  
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    PACAP and VIP Regulates Chondrogenic Differentiation 

 The complete network of signalling cascades governing chondrogenic differentia-
tion is not fully discovered. As articular cartilage has very poor regeneration capac-
ity and no effective or curative treatment is available currently for degenerative 
cartilage diseases such as osteoarthritis the identifi cation of new pharmacological 
targets for reconstruction of cartilage is very important. Hormone like peptides are 
not in the focus of research as blood vessels are not found in the articular cartilage 
and hormones can only be delivered by diffusion from the synovial fl uid into the 
joint cartilage. Low level of nutrition and poor oxygenation also are consequences 
of the avascular nature of this tissue. Indeed, it can be a question of interest if the 
differentiating chondroprogenitor cells or chondrocytes are able to release small 
regulatory peptides and can infl uence their own differentiation via autocrine or 
paracrine ways. 

 Cartilage differentiation in vivo starts with rapid proliferation and aggregation of 
mesenchymal-like chondroprogenitor cells resulting in the formation of precarti-
lage nodules, in which the fi nal commitment of chondroprogenitor cells can be ful-
fi lled. Chondrogenic nodules and cartilage specifi c extracellular matrix production 
are both required for proper hyaline cartilage structure formation [ 30 ]. The ECM of 
articular cartilage, composed mostly of high molecular mass proteoglycans (PG) 
such as aggrecan, glucosaminoglycans (GAG) like hyaluronan form a highly orga-
nized network attracting high amount of water. The extremely hydrated nature of 
the cartilage is essential to proper mechanical functions and offers substantial 
mechanical stability. Moreover, the negatively charged PGs and GAGs also function 
as an extracellular ion pool which can infl uence the normal lifecycle of chondro-
genic cells [ 30 ]. Several transcription factors and receptors have been proven to play 
role in the matrix synthesis. One of these transcription factor families is the SoxE 
from which Sox5, Sox6, and Sox9 are essential for the induction of mRNA expres-
sion of cartilage matrix-specifi c proteins (e.g., COL2A1, aggrecan core protein). 
Sox9 is one of the pivotal signalling elements of chondrogenesis and its regulation 
by reversible phosphorylation is a key momentum of the proper differentiation cycle 
[ 31 ]. Also CREB transcription factor regulates cartilage-specifi c matrix production 
directly and it plays an important role in lubricin secretion of articular cartilage 
[ 32 ]. Moreover, Sox9 promoter is known to be regulated by the CREB that binds to 
a CRE site upstream of Sox9 [ 33 ]. Our laboratory has demonstrated that Sox9 and 
CREB transcription factors are phosphorylated by PKA during cartilage formation 
[ 34 ,  35 ]. Nuclear translocation of the phosphorylated forms of these transcription 
factors enhances the matrix production of chondrocytes. Moreover, a complex regu-
latory mechanism and synergism between Sox9 function and the cAMP-PKA- 
CREB pathway including connections to the BMP signalling was published in both 
mature and differentiating chondrocytes [ 34 ,  36 ]. We have shown that the activation 
of signalling elements phosphorylated by PKA can be equilibrated by Ser/Thr pro-
tein phosphatases such as PP2A and PP2B [ 37 – 39 ]. Our group also demonstrated 
that PP2A is a negative regulator of chondrogenesis and was involved in the 
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 mechanotransduction [ 34 ,  38 ]. On the other hand, we showed that PP2B was a 
positive regulator of chondrogenesis and infl uenced the reversible phosphorylation 
of ERK1/2 and NFAT4 [ 37 ,  39 ]. In one of our previous works, we presented data 
that the changes in cytosolic free Ca 2+  concentration showed a characteristic devel-
opmental stage dependent pattern in chondrogenic cells [ 40 ]. Additionally, differen-
tiating stage dependent Ca 2+  oscillations were identifi ed in chondrogenic cells [ 41 ]. 
A wide range of receptors with substantial Ca 2+  permeability have been described in 
the last decade as part of the mapping of chondrocyte specifi c channelome [ 3 ,  42 ]. 

 Since the regulation of these signalling pathways which can modulate cartilage 
formation and chondrocyte biology is cAMP or Ca 2+  dependent it implicates the 
importance of PACAP/VIP neuropeptides in proper hyaline cartilage formation. 
A potential role of VIP has been demonstrated in bone remodelling and it is known 
to have important functions in infl ammatory diseases [ 43 ]. Moreover, this neuro-
peptide is able to regulate Ca 2+  release of neonatal osteoblasts. VIP exerted a posi-
tive effect in rheumatoid arthritis indicating that its application in the therapy of this 
disorder can be promising [ 44 ]. Although the articular cartilage is aneural, the sur-
rounding synovial membrane is rich in nerve endings, which release VIP into the 
synovial fl uid and subsequently induce anti-infl ammatory processes [ 45 ]. About the 
functions of PACAP in the adult joints we still have exiguous knowledge despite the 
fact that PACAP-positive nerve endings have been described in cartilage canals of 
porcine epiphyseal cartilage more than 15 years ago [ 46 ]. We have demonstrated 
that the mRNAs of preproPACAP as well as PAC1, VPAC1 and VPAC2 receptors 
are expressed in chicken “high density” chondrogenic cell cultures. Additionally, 
we have shown the expression of the PAC1 receptor protein in chondroprogenitor 
cells and an increased extracellular matrix synthesis was detected during PACAP 
administration suggesting the supportive effect of this neuropeptide in cartilage 
development [ 13 ]. Our fi ndings implied the presence of PACAP-related autocrine 
and/or paracrine effects in cartilage itself, refl ecting on a possible new signalling 
mechanism in the regeneration of hyaline cartilage [ 47 ,  48 ]. In the light of these data 
Giunta and coworkers identifi ed PACAP positive chondrocytes in the superfi cial 
zone of articular cartilage and in synovial fl uid [ 12 ]. Moreover, the reduction of the 
neurohormone level was demonstrated during osteoarthritis in the articulating carti-
lage [ 12 ]. Although the expression of the VIP receptors has been detected in chon-
drogenic cells, there are some data pointing out that VIP probably does not infl uence 
matrix production of chondrocytes and synovial cells [ 49 ]. As classical downstream 
targets of PAC1 receptor, Gs and/or Gq proteins become activated triggering the 
elevation of intracellular cAMP concentration or the intracellular release of Ca 2+  
ions [ 5 ]. These events initiate the activation of certain protein kinases such as PKA, 
PKC, and MAPK which all play essential, but probably distinct roles in chondro-
genesis [ 35 ,  37 ,  39 ]. During proper chondrogenesis PKA is proved to phosphorylate 
CREB and Sox9 transcription factors [ 31 ,  35 ] by which induce the secretion of 
cartilage specifi c ECM components (Fig.  20.1 ). PACAP administration into the 
medium of chondrogenic cell cultures increased the phosphorylation both of Sox9 
and CREB, and enhanced matrix production of the differentiating cells by effecting 
on both the expression of aggrecan, collagen type II (Fig.  20.1 ) and the expression 
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of matrix synthesizing enzymes such as Chst11, Extl1, or HAS enzymes [ 13 ]. PAC1 
receptor activation also can be responsible for the elevation of intracellular Ca 2+  
concentration which in turn can activate the Ca 2+  dependent phosphatase PP2B (also 
known as calcineurin). Therefore, we investigated the involvement of this Ser/Thr 
phosphatase in PACAP signalling pathways and connection between PP2B activity 
and PACAP signalling was proven [ 13 ] (Fig.  20.1 ). Similar observations were found 
in chromaffi n cells [ 50 ]. These in vitro results indicate that the presence of PACAP 
is essential for proper cartilage formation although the phenotype of PACAP KO 
mice did not show any dramatic macroscopic morphological alteration of the skel-
eton [ 51 ]. Although the analysis of the genetically modifi ed animals has not been 
completed yet, our initial observations suggested alterations in the composition of 
the cartilage extracellular matrix and in the expression of various signalling mole-
cules in the knee joints of PACAP KO mice (our unpublished data). In the reproduc-
tory system of these mice, the lack of PACAP gene resulted in reduced fertility and 
altered mating behavior of females [ 52 ], moreover the maturation [ 53 ] and the mor-
phology [ 54 ] of gonadal cells showed notable differences. Further evidences  support 
the idea of the regulation effect of PACAP on differentiation of various cells, as 

  Fig. 20.1    Effects of PACAP on chondrogenic signalling mechanisms. The increased concentra-
tion of cAMP level elevates PKA activity. PKA phosphorylates CREB and Sox9 which translocate 
into the nucleus of chondrogenic cells and induce the gene expression of collagen type II, aggre-
can, and various GAGs such as hyaluronic acid. Activation of PAC1 receptor can also elevate the 
intracellular Ca 2+  concentration leading to increased PP2B, PKC, or MAPK signalling activity. 
The elevated activity of PP2B regulates NFAT4 being responsible for the augmented matrix pro-
duction. PACAP has a connection with the IHH signalling pathway by decreasing the activity of 
Gli transcription factors       
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alterations have been found in tooth formation of PACAP KO mice [ 10 ]. The complex 
phenotypic changes raise the possibility of multiple cross talk of PACAP signalling 
with developmental pathways connected to various morphogenes, as well as certain 
compensatory mechanisms of PACAP signalling cascades. For instance MAPK and 
Wnt signalling both play important roles in the proper cartilage formation and tissue 
patterning [ 55 ] and a PACAP-independent PAC1 receptor activation has been 
directly linked to the regulation of Wnt/β-catenin pathways [ 21 ]. Notch signalling 
activation plays a crucial role in chondrogenesis [ 56 ] and exerts modulatory func-
tion in osteoarthritis [ 57 ]. Recently, a cross talk of G protein coupled receptors and 
Notch signalling has been reported in bacterial LPS induced macrophages [ 58 ]. 
SHH pathway is another essential positive chondroregulatory pathway [ 59 ] and it 
can be inhibited by PACAP activation [ 60 ].

   Besides the direct infl uence of PACAP on chondrogenesis, we have demon-
strated a chondro-protective effect of this neuropeptide in chondrogenic cell cul-
tures where its administration compensated the harmful effects of oxidative stress. 
Similar phenomenon has been observed in ischemia or oxidative stress induced 
apoptosis in the central nervous system [ 61 ] or in diabetic kidney [ 62 ]. Moreover, 
PACAP defi cient mice showed higher sensitivity to injury during retinal ischemic 
conditions, axonal lesion, intestinal infl ammation or oxidative stress of the kidneys 
[ 63 ]. The activation of PACAP/VIP system had positive effect in rheumatoid arthri-
tis [ 64 ,  65 ] and decreased expression of PACAP was identifi ed in osteoarthritic knee 
joint [ 12 ]. PACAP is known to exert cytoprotective effects in several other periph-
eral organs and in the CNS, for example cardioprotective effects of these peptides 
have been demonstrated [ 66 ] and a positive effect in Parkinson’s disease also have 
been shown [ 67 ]. On the basis of these observations, a protective and/or ameliorat-
ing effect of PACAP was likely in diseases of the articulating cartilage or skeletal 
stress situations. Indeed, the addition of PACAP1-38 during oxidative stress pre-
vented the inhibition of cartilage matrix production by normalizing the phosphory-
lation of Sox9 and CREB in chicken chondrogenic cells [ 13 ]. Recently, the 
involvement of PACAP or VIP signalling activation in mechanotransduction of 
developing articular cartilage has been proved by our group [ 68 ] and the importance 
of PKA in mechanical cellular response was proposed [ 34 ]. Mechanical load of 
in vitro chondrogenic cell cultures resulted in an increased PAC1 receptor and 
PACAP expression, and supported the undifferentiated stage of chondroblasts. 
Mechanical load of in vitro chondrogenic cell cultures resulted in increased PAC1 
receptor and PACAP expression and the activation of IHH (Fig.  20.1 ) inducing the 
elevated expression of collagen type X which was normalized by PACAP 1-38 addi-
tion [ 68 ]. In these experiments, we found that PACAP administration was able to 
reduce the expression of matrix metalloproteinases (MMP) during oxidative stress 
in chondrogenic cell cultures (our unpublished data). Similar results have been pub-
lished in alveolar cells where both VIP and PACAP were able to decrease the 
expression of certain MMPs and reduced the activation and expression of caspase3 
[ 69 ]. It is also important to note that VIP and its receptors in synovial fi broblasts 
[ 70 ] are able to regulate infl ammatory factors release [ 71 ]. These data all strongly 
suggest that PACAP is a promising future therapeutic agent in infl ammatory and 
degenerative joint diseases [ 72 ].  
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    Bone Formation Under the Control of VIP and PACAP 
Signalling Cascades 

 Development of long bones is determined and organized by a cartilage template. 
Invasion of the calcifi ed cartilage by the osteoprogenitor cells and their precisely 
regulated differentiation are required for the proper osteogenesis [ 4 ]. Development 
of bone tissue is supported by complex bone specifi c developing mechanisms and 
signalling. Differentiation of osteoblasts from osteoprogenitors is followed by an 
initial deposition of a bone specifi c organic ECM abundant in collagen type I com-
pleted with another bone specifi c matrix components such as osteocalcin or osteo-
nectin [ 4 ]. Calcifi cation of bone matrix also requires osteoblast activity, calcium 
hydroxyapatite crystals accumulate and deposit into the collagen rich bone matrix. 
Various signalling cascades are considered as bone specifi c regulatory mechanisms, 
such as BMP, WNT, Notch, and Hedgehog signalling pathways [ 73 – 77 ]. Thyroid 
hormones are crucial components of bone remodelling and differentiation and 
neuronal connections are also found to be involved in bone production [ 74 ]. 
Consequently, the activation of signalling mechanisms mentioned above by hor-
mones and neuropeptides may derive from different sources in the surrounding tis-
sues. The presence and precise timing of the expression of growth factors such as 
BMPs are essential for proper bone production. These factors bind to their own 
receptors; to BMPRs. Subsequently, their activation induces the phosphorylation of 
Smad1/5 and with the help of Smad4 the complex is translocated into the nuclei of 
osteogenic cells and initiates expression of bone specifi c genes (Fig.  20.2 .) such as 
the transcription factor osterix, alkaline phosphatase (ALP), or collagen type I [ 78 , 
 79 ]. Sequential release of BMPs is regulated by complex networks of signalling 
cascades including CREB, one of the transcription factors activated via PKA signal-
ling pathways [ 79 ] and activate the gene expression of the proteins mentioned previ-
ously (Fig.  20.2 ). On the other hand a well-balanced expression of hedgehog 
signalling elements governed by another bone specifi c transcription factor, Runx2 is 
also essential for proper long bone formation [ 80 ] (Fig.  20.2 ). Runx2 can be directly 
phosphorylated by PKA [ 81 ] and subsequently activates the expression of bone 
specifi c signalling elements or ECM components (Fig.  20.2 ). FGFs are also essen-
tial for proper bone formation. FGF2 decreases the ALP activity, Runx2 activation, 
and collagen secretion and elevates the proliferation of osteoblasts [ 82 ]. This com-
plex signalization involves broad spectrum cross talk opportunities with the PACAP/
VIP signalization, further highlighting the signifi cance of neuropeptide signalling in 
bone formation and regeneration.

   At the beginning of enchondral ossifi cation, blood vessels invade into the bone 
template, in a process regulated by VEGFs. The expression of these growth factors 
is also under the control of PKA–Runx2 axis [ 83 ]. Formation and invasion of the 
blood vessels into the calcifi ed cartilage matrix result in the appearance of osteopro-
genitor cells and differentiation of osteoblasts producing the bone matrix. This pro-
cess can also be regulated by neuropeptides [ 84 ] or invading neuronal elements. 
During the elongation of long bones PACAP positive nerve fi bers have been shown 
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penetrating the bone matrix [ 46 ], and VIP positive sympathetic nerve endings have 
also been identifi ed releasing these neuropeptides [ 85 ]. As an interesting observa-
tion, receptor composition and effects of VIP exhibited differences in cells of bones 
developed in different ways, i.e., via membranous or endochondral ossifi cation. 
Moreover, the direct communication of sympathetic nerve fi bers with osteoblasts 
showed an embryonic origin dependent response and signalization, suggesting that 
the innervation of periosteum by peptidergic fi bers plays important function both in 
bone regeneration and formation [ 86 ]. 

 It has been proven that in calvaria derived cell lines, in which the receptors and 
proteins of PACAP and/or VIP signalling are present, PKA activation can be induced 
by PACAP or VIP addition [ 14 ,  87 ]. Accumulation of cAMP in osteoblasts is proved 
to be a result of combined activation of PACAP/VIP and regulates diverse signalling 
pathways infl uencing osteoblast differentiation. In line with this, presence of certain 
neuropeptides was shown to be elevated after bone fracture, indicating their impor-
tance in successful regeneration [ 88 ]. A recent report demonstrated release of various 

  Fig. 20.2    Diverse connections of PACAP signalling pathways in osteogenic cells. PACAP binding 
to its receptors elevates the intracellular cAMP concentration and activates PKA in osteoblast cells. 
CREB is partly phosphorylated by PKA while the nuclear translocation of Runx2 is regulated by the 
kinase. The presence of PACAP does not induce intracellular Ca 2+  release, subsequently the 
Ca 2+  dependent signalling pathways are not activated ( arrows  crossed by  red lines ). The neuro-
peptide trigger the expression of BMPs simultaneously activated Smad transcription factors 
and cross talk with Runx2. SHH or IHH binding to PTCH1 receptor can induce the nuclear 
translocation of Gli1 transcription factor. Activation of Gli1 is inhibited by the continuous 
activation of PKA       
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neuropeptides from periosteal nerve endings resulting in enhancement of intercellular 
communication and increased metabolic activity of osteoblasts [ 89 ]. 

 As it was described above, osteogenic transformation, bone matrix production 
and mineralization are regulated by multiple signalling cascades [ 90 ], where the acti-
vation of MAPK and PKA plays essential roles. Runx2 is one of the key transcription 
factors and it governs osteoblast differentiation [ 91 ] and it is regulated by PKA 
signalling pathways [ 92 ]. 

 Our laboratory has proven that the administration of PACAP into the medium of 
UMR-106 osteoblast cell line enhanced the nuclear translocation of Runx2 and an 
increased expression of collagen type I, ALP and osterix genes was observed 
(Fig.  20.2 ). Interestingly, the phosphorylation level of CREB transcription factors 
was not signifi cantly increased [ 14 ], raising the possibility of the participation of 
MAPK signalling cascade as an alternative signalling pathway for the Runx2 regu-
lation [ 93 ]. 

 BMP signalling pathway is another fundamental regulator of osteogenesis and 
cross talk with Runx2 has been reported [ 94 ] (Fig.  20.2 ). Moreover, the TGFβ/
BMP pathways are activated by PACAP or VIP [ 23 ]. Indeed, the expression of 
BMP6 and 7 elevated in the presence of PACAP in UMR-106 cells indicating a 
strong positive effect of the neuropeptide in bone differentiation. Moreover, as a 
sign of BMPR activation, a pronounced elevation of the nuclear presence of Smad1 
transcription factor was detected under the effect of PACAP administration [ 14 ]. 
TGFβ/BMP signalling pathways are involved in the regulation and activation of 
VIP signalling cascades. Exogenous VIP may also result in the activation of Smads 
[ 95 ] suggesting a complex signalling with numerous alternative routes during bone 
development [ 14 ]. 

 The involvement of MAPK system has been reported in bone development and 
in fracture healing. The administration of PACAP and VIP is proven to upregulate 
the activation of ERK 1/2 in osteoblasts [ 96 ,  97 ] or adipogenic models [ 98 ]. The 
two neurohormones have negative effect on JNK and p38 phosphorylation in mono-
cytes in vivo and in vitro [ 99 ]. Additionally, intracellular Ca 2+  concentration can be 
elevated by PACAP [ 100 ] or VIP [ 101 ], resulting in an activation of classical PKCs 
and ERK both infl uencing osteoblast differentiation [ 102 ]. Nonetheless, in UMR- 
106 cell line we were not able to detect signifi cant Ca 2+  concentration change and 
no signifi cant alteration was detected in activation of classical PKCs such as PKCα 
[ 14 ] (Fig.  20.2 ). Ca 2+  infl ux can be evoked by PACAP [ 101 ] PACAP and VIP are 
able to decrease the Ca 2+  entry via L- and N-type calcium channels in neurons [ 102 ]. 
It is known that the administration of PACAP affects Ca 2+  oscillation [ 103 ] and 
alters the Ca 2+  related vesicular transport of chromaffi n cells [ 104 ]. Besides this 
dynamic alteration of intracellular Ca-homeostasis, PACAP also exerts effects on 
matrix mineralization. We have reported that the inorganic matrix components of 
UMR-106 cell line can be elevated by PACAP addition [ 14 ]. Moreover, an altered 
mineralization was detected during tooth formation of PACAP defi cient mice [ 10 ], 
suggesting a yet unknown connection between PACAP and mineralized tissue for-
mation. As a possible mechanism for PACAP induced extracellular Ca 2+  accumula-
tion during osteogenesis, calcitonin gene-related peptide was proven to infl uence 
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osteoclast function [ 105 ] and the presence of PACAP decreased the matrix- resorption 
and consequent Ca-release by these cells [ 90 ,  106 ]. 

 Hedgehog signalling is of key importance amongst the regulatory mechanisms of 
bone and cartilage development [ 80 ]. A well-defi ned balance between Indian hedge-
hog (IHH) and parathyroid hormone related peptide (PTHrP) is essential for proper 
long bone formation, regulation of proliferation, and matrix production of osteo-
blasts via the activation of Runx2 transcription factor [ 107 ]. PTHrP directly com-
municates with PKA signalling inducing the activation of CREB and NFAT factors 
in osteoblasts [ 108 ]. In UMR-106 cells the application of PACAP elevated the 
expression of PTHrP without altering the IHH expression [ 14 ]. Sonic hedgehog 
(SHH) pathway is known to be regulated by PACAP signalling [ 60 ] and the activa-
tion of PKA downregulates the function of Gli1, which consequently decreases the 
proliferation [ 24 ] (Fig.  20.2 ). In PACAP KO mice, enhanced SHH signalling was 
detected during tooth development [ 10 ]. On the contrary, exogenous administration 
of PACAP elevated the expression of SHH and a more pronounced nuclear presence 
of Gli1 was found in rat UMR-106 cells [ 14 ]. This contradiction may stem from 
the osteosarcoma origin of UMR cells, as malignant cells can exhibit alterations of 
various signalling mechanisms. Another hypothesis is that the cellular presence of 
the repressor form of Gli2 or Gli3 transcription factors are also increased in UMR-
106 cells which upregulate the activation of SHH signalling pathways in this tumor 
cell line. Nevertheless, we have only sparse data about the function of VIP in bone 
development, but it is a suppressor of bone resorption and has very similar effect as 
mechanical load in MC3T3 osteoblastic cell line [ 43 ].  

    Conclusion 

 Articular cartilage is optimally able to dissipate the mechanical stress, which loads 
the articular surface and transmits it to the subchondral bone. Chondrocytes repre-
sent the only type of cells in cartilage with a very limited capacity to reproduce 
themselves even in a healthy adult human. Therefore, they cannot regenerate the 
cartilage tissue in case of traumatic injury or loss of joint surface, which can be the 
ultimate consequence of any type of infl ammatory joint diseases. Protection of this 
tissue during joint infl ammation, stimulation of its poor regeneration capacity or pro-
duction and implantation of artifi cial cartilage all are major challenges of the modern 
reparative medicine. PACAP was originally described as a hormone-like product of 
neurons, able to reduce the harmful consequences of various brain injuries, as well as 
playing regulatory roles during brain development. On the basis of the data presented 
and summarized above, PACAP and VIP are important modulators of the physiologi-
cal differentiating processes of articular cartilage and may infl uence endochondral 
ossifi cation. As PACAP and VIP neuropeptides are naturally synthetized signal 
molecules of humans, they can be good candidates for application via intraarticular 
injection as chondroprotective agents or they can be interesting candidates for the 
regulation of callus formation.
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