1,036 research outputs found

    A dynamically extending exclusion process

    Full text link
    An extension of the totally asymmetric exclusion process, which incorporates a dynamically extending lattice is explored. Although originally inspired as a model for filamentous fungal growth, here the dynamically extending exclusion process (DEEP) is studied in its own right, as a nontrivial addition to the class of nonequilibrium exclusion process models. Here we discuss various mean-field approximation schemes and elucidate the steady state behaviour of the model and its associated phase diagram. Of particular note is that the dynamics of the extending lattice leads to a new region in the phase diagram in which a shock discontinuity in the density travels forward with a velocity that is lower than the velocity of the tip of the lattice. Thus in this region the shock recedes from both boundaries.Comment: 20 pages, 12 figure

    A model of hyphal tip growth involving microtubule-based transport

    Full text link
    We propose a simple model for mass transport within a fungal hypha and its subsequent growth. Inspired by the role of microtubule-transported vesicles, we embody the internal dynamics of mass inside a hypha with mutually excluding particles progressing stochastically along a growing one-dimensional lattice. The connection between long range transport of materials for growth, and the resulting extension of the hyphal tip has not previously been addressed in the modelling literature. We derive and analyse mean-field equations for the model and present a phase diagram of its steady state behaviour, which we compare to simulations. We discuss our results in the context of the filamentous fungus, Neurospora crassa.Comment: 5 pages, 5 figure

    Phase diagram of two-lane driven diffusive systems

    Full text link
    We consider a large class of two-lane driven diffusive systems in contact with reservoirs at their boundaries and develop a stability analysis as a method to derive the phase diagrams of such systems. We illustrate the method by deriving phase diagrams for the asymmetric exclusion process coupled to various second lanes: a diffusive lane; an asymmetric exclusion process with advection in the same direction as the first lane, and an asymmetric exclusion process with advection in the opposite direction. The competing currents on the two lanes naturally lead to a very rich phenomenology and we find a variety of phase diagrams. It is shown that the stability analysis is equivalent to an `extremal current principle' for the total current in the two lanes. We also point to classes of models where both the stability analysis and the extremal current principle fail

    The extreme yet transient nature of glacial erosion

    Get PDF
    Ice can sculpt extraordinary landscapes, yet the efficacy of, and controls governing, glacial erosion on geological timescales remain poorly understood and contended, particularly across Polar continental shields. Here, we assimilate geophysical data with modelling of the Eurasian Ice Sheet — the third largest Quaternary ice mass that spanned 49°N to 82°N — to decipher its erosional footprint during the entire last ~100 ka glacial cycle. Our results demonstrate extreme spatial and temporal heterogeneity in subglacial erosion, with rates ranging from 0 to 5 mm a−1 and a net volume equating to ~130,000 km3 of bedrock excavated to depths of ~190 m. A hierarchy of environmental controls ostensibly underpins this complex signature: lithology, topography and climate, though it is basal thermodynamics that ultimately regulates erosion, which can be variously protective, pervasive, or, highly selective. Our analysis highlights the remarkable yet fickle nature of glacial erosion — critically modulated by transient ice-sheet dynamics — with its capacity to impart a profound but piecemeal geological legacy across mid- and high latitudes

    Long-Term Functionality of Rural Water Services in Developing Countries: A System Dynamics Approach to Understanding the Dynamic Interaction of Causal Factors

    Full text link
    Research has shown that sustainability of rural water infrastructure in developing countries is largely affected by the dynamic and systemic interactions of technical, social, financial, institutional, and environmental factors that can lead to premature water system failure. This research employs systems dynamic modeling, which uses feedback mechanisms to understand how these factors interact dynamically to influence long-term rural water system functionality. To do this, the research first identified and aggregated key factors from literature, then asked water sector experts to indicate the polarity and strength between factors through Delphi and cross impact survey questionnaires, and finally used system dynamics modeling to identify and prioritize feedback mechanisms. The resulting model identified 101 feedback mechanisms that were dominated primarily by three and four-factor loops that contained some combination of the factors: Water System Functionality, Community, Financial, Government, Management, and Technology. These feedback mechanisms were then scored and prioritized, with the most dominant feedback mechanism identified as Water System Functionality – Community – Finance – Management. This research offers insight into the dynamic interaction of factors impacting sustainability of rural water infrastructure through the identification of these feedback mechanisms and makes a compelling case for future research to longitudinally investigate the interaction of these factors in various contexts

    Cooperation, Norms, and Revolutions: A Unified Game-Theoretical Approach

    Get PDF
    Cooperation is of utmost importance to society as a whole, but is often challenged by individual self-interests. While game theory has studied this problem extensively, there is little work on interactions within and across groups with different preferences or beliefs. Yet, people from different social or cultural backgrounds often meet and interact. This can yield conflict, since behavior that is considered cooperative by one population might be perceived as non-cooperative from the viewpoint of another. To understand the dynamics and outcome of the competitive interactions within and between groups, we study game-dynamical replicator equations for multiple populations with incompatible interests and different power (be this due to different population sizes, material resources, social capital, or other factors). These equations allow us to address various important questions: For example, can cooperation in the prisoner's dilemma be promoted, when two interacting groups have different preferences? Under what conditions can costly punishment, or other mechanisms, foster the evolution of norms? When does cooperation fail, leading to antagonistic behavior, conflict, or even revolutions? And what incentives are needed to reach peaceful agreements between groups with conflicting interests? Our detailed quantitative analysis reveals a large variety of interesting results, which are relevant for society, law and economics, and have implications for the evolution of language and culture as well

    Master crossover behavior of parachor correlations for one-component fluids

    Full text link
    The master asymptotic behavior of the usual parachor correlations, expressing surface tension σ\sigma as a power law of the density difference ρLρV\rho_{L}-\rho_{V} between coexisting liquid and vapor, is analyzed for a series of pure compounds close to their liquid-vapor critical point, using only four critical parameters (βc)1(\beta_{c})^{-1}, αc\alpha_{c}, ZcZ_{c} and YcY_{c}, for each fluid. ... The main consequences of these theoretical estimations are discussed in the light of engineering applications and process simulations where parachor correlations constitute one of the most practical method for estimating surface tension from density and capillary rise measurements

    Post-collisional shift from polygenetic to monogenetic volcanism revealed by new 40Ar/39Ar ages in the southern Lesser Caucasus (Armenia)

    Get PDF
    The post-collisional Syunik and Vardenis volcanic highlands, located in the southern Lesser Caucasus mountains (part of the Arabia-Eurasia collision zone) are host to over 200 monogenetic volcanoes, as well as 2 large Quaternary polygenetic volcanoes in the Syunik highland. The latter are overlain by lavas from the monogenetic volcanoes, suggesting there was a transition in the style of volcanic activity from large-volume central vent eruptions to dispersed small-volume eruptions. 12 new high quality 40Ar/39Ar ages are presented here, with 11 ages calculated by step-heating experiments on groundmass separates, and the final age obtained from total fusions of a population of sanidines. All the ages were younger than 1.5 Ma, except for one ignimbrite deposit whose sanidines gave an age of 6 Ma. While the bulk of the exposed products of post-collisional volcanism relate to Pleistocene activity, it is clear there has been active volcanism in the region since at least the late Miocene. All ages for monogenetic volcanoes in the Syunik highland are younger than 1 Ma, but to the north in Vardenis there is geochronological evidence of monogenetic volcanism at 1.4 and 1.3 Ma. An age of 1.3 Ma is determined for a lava flow from one of the polygenetic volcanoes- Tskhouk, and when combined with other ages helps constrain the timing of the polygenetic to monogenetic transition to around 1 Ma. The new ages illustrate a degree of spatio-temporal coupling in the formation of new vents, which could be related to pull-apart basins focussing ascending magmas. This coupling means that future eruptions are particularly likely to occur close to the sites of the most recent Holocene activity. The polygenetic to monogenetic transition is argued to be the result of a decreasing magma supply based on: (i) volume estimates for Holocene eruptions and for all monogenetic volcanoes and their lava flows in Syunik; and (ii) the volcanic stratigraphy of the Lesser Caucasus region which shows late Pliocene- early Pleistocene continental flood basalts being succeeded by a few large andesite-dacite volcanoes and then the most recent deposits consisting of small-volume scoria cones. The Syunik highland has the highest density of monogenetic centres in the Lesser Caucasus, which is taken to indicate this region has the highest magma flux, and was therefore the last location to transition to monogenetic volcanism, which is why the transition is most clearly seen there. There is no evidence from Sr-Nd-B isotope measurements for the exhaustion of fusible slab components in the mantle source, showing that an inherited slab signature can survive for millions of years after the end of subduction. Although volcanism in the Lesser Caucasus is currently waning, a future pulse of activity is possible
    corecore